At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe...At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.展开更多
The top-coal failing ability is a key factor to analyze for the application of coal mining with top-coal caving. Based on a hard-and-thick strata, which acts both as the floor of the upper coal seam and as the roof of...The top-coal failing ability is a key factor to analyze for the application of coal mining with top-coal caving. Based on a hard-and-thick strata, which acts both as the floor of the upper coal seam and as the roof of the lower coal seam, nine mining projects wcrc put forward to examine the mining of upper and lower coal seams, and a numerical simulation was used to study in detail the corresponding top-coal compressed volume of the lower coal seam. By the simulation effects of different layouts of coalface, the rational mining method was determined to bc the staggered layout of coalface in the upper and the lower coal seam. This can ensure the successful use of fully-mechanized coalfacc with top--coal caving in the lower coal seam.展开更多
A method with simulation and analysis of the resin flow in a screw is presented to ease the control of some problems that may affect the efficiency and the quality of the product among existing screws in an injection ...A method with simulation and analysis of the resin flow in a screw is presented to ease the control of some problems that may affect the efficiency and the quality of the product among existing screws in an injection machine. The physical model of a screw is established to represent the stress, the strain, the relationship between velocity and stress, and the temperature of the cells. In this paper, a working case is considered where the velocity and the temperature distributions at any section of the flow are obtained. The analysis of the computational results shows an ability to master various parameters depending on the specifications.展开更多
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl...Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.展开更多
This paper has been done on study kinematic problem of Persian joint in a general way. In this study, instead of using simulation analysis method as in the previous researches, the 3D rotation matrix method is applied...This paper has been done on study kinematic problem of Persian joint in a general way. In this study, instead of using simulation analysis method as in the previous researches, the 3D rotation matrix method is applied to present the relationship of angular velocities of input shaft and output shaft. The result shows that when the angle between intersecting shafts changes from 0 to 135°, the angular velocity is maintained constant. This new result completely matches with analysis from kinematic simulation of this mechanism. The obtained result is an important base to solve dynamic problem in order to develop the applicability of this joint in reality.展开更多
This paper focuses on the analytical derivation and the numerical simulation analyses to predict the interaction influences between a landslide and a new tunnel in mountain areas. Based on the slip-line theory, the di...This paper focuses on the analytical derivation and the numerical simulation analyses to predict the interaction influences between a landslide and a new tunnel in mountain areas. Based on the slip-line theory, the disturbance range induced by tunneling and the minimum safe distance between the tunnel vault and the sliding belt are obtained in consideration of the mechanical analyses of relaxed rocks over the tunnel opening. The influence factors for the minimum safe crossing distance are conducted,including the tunnel radius, the friction angle of surrounding rocks, the inclination angle of sliding belt,and the friction coefficient of surrounding rocks. Secondly, taking account of the compressive zone and relaxed rocks caused by tunneling, the Sarma method is employed to calculate the safety factor of landslide. Finally, the analytical solutions for interaction between the tunnel and the landslide are compared with a series of numerical simulations, considering the cases for different perpendicular distances between the tunnel vault and the sliding belt. Resultsshow that the distance between the tunnel vault and the slip zone has significant influence on the rock stress and strain. For the case of the minimum crossing distance, a plastic zone in the landslide traversed by tunneling would be formed with rather large range, which seriously threatens the stability of landslide. This work demonstrates that the minimum safe crossing distance obtained from numerical simulation is in a good agreement with that calculated by the proposed analytical solutions.展开更多
This paper proposes a new rapid and efficient method for woolen textile simulation- mapping synthesize. This method uses a stochastic function to simulate fuzz on some types of wool textile. The wool yarns are simulat...This paper proposes a new rapid and efficient method for woolen textile simulation- mapping synthesize. This method uses a stochastic function to simulate fuzz on some types of wool textile. The wool yarns are simulated on the basis of Phong illumination model. In order to obtain a visual effect of the wool textile with fuzz, the light intensity of fuzz is synthesized as a color parameter in the Phong illumination model after the yams have been simulated. The model of woolen textile with fuzz can be built eventually.With synthesis mapping methods, user can choose his favorite fuzz density on the wool by controlling some appropriate parameters.展开更多
Vehicle crashworthiness simulation is the main component of the virtual auto-body design. One developing commercial vehicle was simulated on crashworthiness by the non-linear finite element method. The bumper crashwor...Vehicle crashworthiness simulation is the main component of the virtual auto-body design. One developing commercial vehicle was simulated on crashworthiness by the non-linear finite element method. The bumper crashworthiness at the speed of 8 km/h was analyzed and valuated. On the other hand, the deformation of the auto-body, the movement of the steering wheel and the dynamic responses of the occupant at the initial velocity of 50 km/h were studied. The results appear that the design of the vehicle could be improved on structure and material. Finally, the frontal longitudinal beam, the main energy-absorbing part of the auto-body, was optimized on structure. Simulation results also show that applying new material, such as high strength steel, and new manufacture techniques, such as tailor-welded blanks could improve the crashworthiness of the vehicle greatly.展开更多
Towing tractor drivelines are lightly damped non-linear systems. Interactions between components can cause dynamic behavors such as gear gap impact in gear transmissions, shuffle and clonk phenomena in driveline. The ...Towing tractor drivelines are lightly damped non-linear systems. Interactions between components can cause dynamic behavors such as gear gap impact in gear transmissions, shuffle and clonk phenomena in driveline. The torsional vibration of driveline has an important effect on grand engineering vehicle vibration and noise. Through analyzing torsional vibration equations of driveline, torsional vibration model of driveline is developed by using Matlab/Simulink software, Shuffle and clonk phenomena are observed in torsional vibration. The modeling method of analysizing driveline torsional vibration can be used to research and improve similar engineering vehicle driveline behavors.展开更多
The advantage of built-up sleeved backup roll was described. Based on the stress distribution analysis and simulation for the built-up sleeved backup roll by using finite element method, the effects of roll sleeve thi...The advantage of built-up sleeved backup roll was described. Based on the stress distribution analysis and simulation for the built-up sleeved backup roll by using finite element method, the effects of roll sleeve thickness and shrink range on the stress-strain field were studied. Finally, based on the methodology and strategy of the fatigue analysis, fatigue life of backup roll was estimated by using the stress-strain data obtained through finite element simulation. The results show that roll sleeve thickness and shrink range have a great influence on sleeve stress distribution of built-up sleeved roll. Under the circumstance of ensuring transferring enough torque, the shrink range should be kept small. However, thicker roll sleeve has longer roll service life when the shrink range is constant.展开更多
Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by st...Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by studying model simulations under different scenarios.The global mean temperatures from pre-industrial control runs(pi Control),historical(all forcings)simulations,natural forcing only simulations(Historical Nat),greenhouse gas forcing only simulations(Historical GHG),etc.,are analyzed using the detrended fluctuation analysis.The authors find that the LTM already exists in the pi Control simulations,indicating the important roles of internal natural variability in producing the LTM.By comparing the results among different scenarios,the LTM from the piControl runs is further found to be strengthened by adding natural forcings such as the volcanic forcing and the solar forcing.Accordingly,the observed LTM in the climate system is suggested to be mainly controlled by both the‘internal’natural variability and the‘external’natural forcings.The anthropogenic forcings,however,may weaken the LTM.In the projections from RCP2.6 to RCP8.5,a weakening trend of the LTM strength is found.In view of the close relations between the climate memory and the climate predictability,a reduced predictability may be expected in a warming climate.展开更多
The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equatio...The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equations were solved by the minimal least square method (viz. general inverse method). It demonstrates that the feasibility and the accuracy of the present approach were impoved significantly, compared with the result of unimproved damage identification.展开更多
A mathematical model for dilution crystallization of spectinomycin dihydrochloride pentahydrate was established on the basis of the population and mass balance. Three operating modes, i.e., constant mass rate addition...A mathematical model for dilution crystallization of spectinomycin dihydrochloride pentahydrate was established on the basis of the population and mass balance. Three operating modes, i.e., constant mass rate addition of diluent, constant mass fraction of diluent and constant size-independent growth rate, were investigated over a wide range of controlled parameters. The intrinsic characteristics of the crystallization process and the influence of operation parameters were analyzed in detail. Suitable strategy for better performance was suggested.展开更多
The performance of a digging shovel mainly depends on the style of the shovel, while the conventional experiment methods always suffer from the problems of high lost and long period. Aiming at these problems and the c...The performance of a digging shovel mainly depends on the style of the shovel, while the conventional experiment methods always suffer from the problems of high lost and long period. Aiming at these problems and the characteristic that soil is composed of countless small particles, dynamic simulation analysis was performed on the resistance to a bionic digging shovel and crushing rate of the soil during the normal working process of the bionic digging shovel by EDEM through numerical simulation, calculation and comparison. The results showed that compared with the ordinary shovel, the average drag-reducing rate in the X direction was 10.41%, and the average drag-reducing rate in the Y direction was 16.28%, and the soil crushing rate was improved by 2.67%. Therefore, the bionic digging shovel has certain superiority and extension value in structure and performance. Moreover, this analysis case fully demonstrates the unique advantage of DEM method and its generalizability, and provides certain reference for similar studies.展开更多
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce...A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.展开更多
A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of...A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.展开更多
In order to determine how a roadway withstands a momentum wave and determinethe extent of damage to rock surrounding the roadway under different force wavepeak impacts,the roadway dynamic response state was analysed u...In order to determine how a roadway withstands a momentum wave and determinethe extent of damage to rock surrounding the roadway under different force wavepeak impacts,the roadway dynamic response state was analysed using numerical simulationmethod.The roadway's critical peak force wave and fracture region under dynamicwave action were put forward.It is concluded that the method has practical value to roadwaysupport and rockburst prevention.展开更多
A model to describe the hysteresis damper character of rubber material is presented in this paper. It consists of a parallel spring and damper, whose coefficients change with vibration frequencies. In order to acquire...A model to describe the hysteresis damper character of rubber material is presented in this paper. It consists of a parallel spring and damper, whose coefficients change with vibration frequencies. In order to acquire these relations, the force decomposition is carried out according to some sine vibration measurement data about nonlinear forces changing with deformations of the rubber material. The nonlinear force is decomposed into a spring force and a damper force, which are represented by a frcquency-dependent spring and damper coefficient, respectively. Repeating this step for different measurements will give different coefficients corresponding to different frequencies. Then, application of a parameter identification method will provide the requested functions over frequency. Using those formulae, as an example, the dynamic character of a hollow shaft system supported by rubber rings is analyzed and the acceleration response curve in the centroid position is calculated. Comparisons with sine vibration experiments of the real system show a maximal inaccuracy of 8. 8 %. Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.展开更多
This paper presents a probabilistic reliability method for the welded shell during crack growth. The crack growth model incorporated with a failure assessment diagram(FAD) , which can provides a better estimation of...This paper presents a probabilistic reliability method for the welded shell during crack growth. The crack growth model incorporated with a failure assessment diagram(FAD) , which can provides a better estimation of the critical crack length, is developed to describe fatigue failure. All variables for particular welded joints of the shell are studied. Among them, the stress variables are based on the calculated stress by using the finite element (FE) code ANSYS. Fatigue reliability analysis of the welded shell is performed by using the Monte Carlo simulation method. The failure probability curve of the example kiln is significantly useful to determine the repair schedule of shell cracks.展开更多
文摘At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.
基金Projects 50374065 supported by National Natural Science Foundation of China
文摘The top-coal failing ability is a key factor to analyze for the application of coal mining with top-coal caving. Based on a hard-and-thick strata, which acts both as the floor of the upper coal seam and as the roof of the lower coal seam, nine mining projects wcrc put forward to examine the mining of upper and lower coal seams, and a numerical simulation was used to study in detail the corresponding top-coal compressed volume of the lower coal seam. By the simulation effects of different layouts of coalface, the rational mining method was determined to bc the staggered layout of coalface in the upper and the lower coal seam. This can ensure the successful use of fully-mechanized coalfacc with top--coal caving in the lower coal seam.
基金the National Natural Science Foundation of China (No. 10476026) the Natural Science Foundation of Zheji-ang Province (No. Y106655), China
文摘A method with simulation and analysis of the resin flow in a screw is presented to ease the control of some problems that may affect the efficiency and the quality of the product among existing screws in an injection machine. The physical model of a screw is established to represent the stress, the strain, the relationship between velocity and stress, and the temperature of the cells. In this paper, a working case is considered where the velocity and the temperature distributions at any section of the flow are obtained. The analysis of the computational results shows an ability to master various parameters depending on the specifications.
文摘Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.
文摘This paper has been done on study kinematic problem of Persian joint in a general way. In this study, instead of using simulation analysis method as in the previous researches, the 3D rotation matrix method is applied to present the relationship of angular velocities of input shaft and output shaft. The result shows that when the angle between intersecting shafts changes from 0 to 135°, the angular velocity is maintained constant. This new result completely matches with analysis from kinematic simulation of this mechanism. The obtained result is an important base to solve dynamic problem in order to develop the applicability of this joint in reality.
基金financial support provided by Natural Science Foundation of China (Grant No. 51008188)by Shanghai Natural Science Foundation (Grant No. 15ZR1429400)+2 种基金by Open Project Program of State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering (Grant No. CQSLBF-Y15-1)by Open Project Program of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2015K015)by the Open Project Program of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources (Grant No. 2015k005)
文摘This paper focuses on the analytical derivation and the numerical simulation analyses to predict the interaction influences between a landslide and a new tunnel in mountain areas. Based on the slip-line theory, the disturbance range induced by tunneling and the minimum safe distance between the tunnel vault and the sliding belt are obtained in consideration of the mechanical analyses of relaxed rocks over the tunnel opening. The influence factors for the minimum safe crossing distance are conducted,including the tunnel radius, the friction angle of surrounding rocks, the inclination angle of sliding belt,and the friction coefficient of surrounding rocks. Secondly, taking account of the compressive zone and relaxed rocks caused by tunneling, the Sarma method is employed to calculate the safety factor of landslide. Finally, the analytical solutions for interaction between the tunnel and the landslide are compared with a series of numerical simulations, considering the cases for different perpendicular distances between the tunnel vault and the sliding belt. Resultsshow that the distance between the tunnel vault and the slip zone has significant influence on the rock stress and strain. For the case of the minimum crossing distance, a plastic zone in the landslide traversed by tunneling would be formed with rather large range, which seriously threatens the stability of landslide. This work demonstrates that the minimum safe crossing distance obtained from numerical simulation is in a good agreement with that calculated by the proposed analytical solutions.
文摘This paper proposes a new rapid and efficient method for woolen textile simulation- mapping synthesize. This method uses a stochastic function to simulate fuzz on some types of wool textile. The wool yarns are simulated on the basis of Phong illumination model. In order to obtain a visual effect of the wool textile with fuzz, the light intensity of fuzz is synthesized as a color parameter in the Phong illumination model after the yams have been simulated. The model of woolen textile with fuzz can be built eventually.With synthesis mapping methods, user can choose his favorite fuzz density on the wool by controlling some appropriate parameters.
文摘Vehicle crashworthiness simulation is the main component of the virtual auto-body design. One developing commercial vehicle was simulated on crashworthiness by the non-linear finite element method. The bumper crashworthiness at the speed of 8 km/h was analyzed and valuated. On the other hand, the deformation of the auto-body, the movement of the steering wheel and the dynamic responses of the occupant at the initial velocity of 50 km/h were studied. The results appear that the design of the vehicle could be improved on structure and material. Finally, the frontal longitudinal beam, the main energy-absorbing part of the auto-body, was optimized on structure. Simulation results also show that applying new material, such as high strength steel, and new manufacture techniques, such as tailor-welded blanks could improve the crashworthiness of the vehicle greatly.
文摘Towing tractor drivelines are lightly damped non-linear systems. Interactions between components can cause dynamic behavors such as gear gap impact in gear transmissions, shuffle and clonk phenomena in driveline. The torsional vibration of driveline has an important effect on grand engineering vehicle vibration and noise. Through analyzing torsional vibration equations of driveline, torsional vibration model of driveline is developed by using Matlab/Simulink software, Shuffle and clonk phenomena are observed in torsional vibration. The modeling method of analysizing driveline torsional vibration can be used to research and improve similar engineering vehicle driveline behavors.
基金Project(E2010001155) supported by the Natural Science Foundation of Hebei Province, China
文摘The advantage of built-up sleeved backup roll was described. Based on the stress distribution analysis and simulation for the built-up sleeved backup roll by using finite element method, the effects of roll sleeve thickness and shrink range on the stress-strain field were studied. Finally, based on the methodology and strategy of the fatigue analysis, fatigue life of backup roll was estimated by using the stress-strain data obtained through finite element simulation. The results show that roll sleeve thickness and shrink range have a great influence on sleeve stress distribution of built-up sleeved roll. Under the circumstance of ensuring transferring enough torque, the shrink range should be kept small. However, thicker roll sleeve has longer roll service life when the shrink range is constant.
基金supported by the National Natural Science Foundation of China grant number 41675088the CAS Pioneer Hundred Talents Program。
文摘Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by studying model simulations under different scenarios.The global mean temperatures from pre-industrial control runs(pi Control),historical(all forcings)simulations,natural forcing only simulations(Historical Nat),greenhouse gas forcing only simulations(Historical GHG),etc.,are analyzed using the detrended fluctuation analysis.The authors find that the LTM already exists in the pi Control simulations,indicating the important roles of internal natural variability in producing the LTM.By comparing the results among different scenarios,the LTM from the piControl runs is further found to be strengthened by adding natural forcings such as the volcanic forcing and the solar forcing.Accordingly,the observed LTM in the climate system is suggested to be mainly controlled by both the‘internal’natural variability and the‘external’natural forcings.The anthropogenic forcings,however,may weaken the LTM.In the projections from RCP2.6 to RCP8.5,a weakening trend of the LTM strength is found.In view of the close relations between the climate memory and the climate predictability,a reduced predictability may be expected in a warming climate.
文摘The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equations were solved by the minimal least square method (viz. general inverse method). It demonstrates that the feasibility and the accuracy of the present approach were impoved significantly, compared with the result of unimproved damage identification.
文摘A mathematical model for dilution crystallization of spectinomycin dihydrochloride pentahydrate was established on the basis of the population and mass balance. Three operating modes, i.e., constant mass rate addition of diluent, constant mass fraction of diluent and constant size-independent growth rate, were investigated over a wide range of controlled parameters. The intrinsic characteristics of the crystallization process and the influence of operation parameters were analyzed in detail. Suitable strategy for better performance was suggested.
文摘The performance of a digging shovel mainly depends on the style of the shovel, while the conventional experiment methods always suffer from the problems of high lost and long period. Aiming at these problems and the characteristic that soil is composed of countless small particles, dynamic simulation analysis was performed on the resistance to a bionic digging shovel and crushing rate of the soil during the normal working process of the bionic digging shovel by EDEM through numerical simulation, calculation and comparison. The results showed that compared with the ordinary shovel, the average drag-reducing rate in the X direction was 10.41%, and the average drag-reducing rate in the Y direction was 16.28%, and the soil crushing rate was improved by 2.67%. Therefore, the bionic digging shovel has certain superiority and extension value in structure and performance. Moreover, this analysis case fully demonstrates the unique advantage of DEM method and its generalizability, and provides certain reference for similar studies.
基金Projects(51908557,51378510)supported by the National Natural Science Foundation of China。
文摘A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.
基金Sponsored by the National 985 Project Foundation of China
文摘A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.
基金Supported by the National Key Technology R&D Program in 11 th Five Years Plan of China(2006BAK03B06)
文摘In order to determine how a roadway withstands a momentum wave and determinethe extent of damage to rock surrounding the roadway under different force wavepeak impacts,the roadway dynamic response state was analysed using numerical simulationmethod.The roadway's critical peak force wave and fracture region under dynamicwave action were put forward.It is concluded that the method has practical value to roadwaysupport and rockburst prevention.
文摘A model to describe the hysteresis damper character of rubber material is presented in this paper. It consists of a parallel spring and damper, whose coefficients change with vibration frequencies. In order to acquire these relations, the force decomposition is carried out according to some sine vibration measurement data about nonlinear forces changing with deformations of the rubber material. The nonlinear force is decomposed into a spring force and a damper force, which are represented by a frcquency-dependent spring and damper coefficient, respectively. Repeating this step for different measurements will give different coefficients corresponding to different frequencies. Then, application of a parameter identification method will provide the requested functions over frequency. Using those formulae, as an example, the dynamic character of a hollow shaft system supported by rubber rings is analyzed and the acceleration response curve in the centroid position is calculated. Comparisons with sine vibration experiments of the real system show a maximal inaccuracy of 8. 8 %. Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.
基金National Natural Science Foundation of China(No.51075140)Scientific Research Fund of Hunan Provincial Education Department(No.09C407)
文摘This paper presents a probabilistic reliability method for the welded shell during crack growth. The crack growth model incorporated with a failure assessment diagram(FAD) , which can provides a better estimation of the critical crack length, is developed to describe fatigue failure. All variables for particular welded joints of the shell are studied. Among them, the stress variables are based on the calculated stress by using the finite element (FE) code ANSYS. Fatigue reliability analysis of the welded shell is performed by using the Monte Carlo simulation method. The failure probability curve of the example kiln is significantly useful to determine the repair schedule of shell cracks.