A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous compa...A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous comparator unit,and asynchronous selector unit are proposed.A full-custom design of asynchronous 4-bit ACS processor is fabricated in CSMC-HJ 0.6μm CMOS 2P2M mixed-mode process.At a supply voltage of 5V,when it operates at 20MHz,the power consumption is 75.5mW.The processor has no dynamic power consumption when it awaits an opportunity in sleep mode.The results of performance test of asynchronous 4-bit ACS processor show that the average case response time 19.18ns is only 82% of the worst-case response time 23.37ns.Compared with the synchronous 4-bit ACS processor in power consumption and performance by simulation,it reveals that the asynchronous ACS processor has some advantages than the synchronous one.展开更多
To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation o...To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.展开更多
In High Efficiency Video Coding, the Residual Quad-Yree (RQT) coding is used to encode the prediction residual for both intra and inter Coding Units (CU) and provides improved coding gains. However, this results i...In High Efficiency Video Coding, the Residual Quad-Yree (RQT) coding is used to encode the prediction residual for both intra and inter Coding Units (CU) and provides improved coding gains. However, this results in much higher computational complexities. To address this problem, we develop two fast RQT algorithms for intra- and inter-prediction residual coding respectively. For intra coding, the proposed algorithm selects the best prediction mode in the rate distortion mode decision process using a Prediction Unit (PU) size-dependent fast RQT depth decision on a reduced prediction mode candidates set from the rough mode decision process. For inter coding, in addition to CU size-dependent fast RQT depth decisions, we propose a discriminant analy- sis-based fast depth decision algorithm to det- ermine the best transform unit size. Experimental results show that on average, we can real- ise a 21.29% encoding time saving and 0.03% bit-rate reduction for intra coding, while 15% of the encoding time can be saved with a negligible coding performance loss for inter coding.展开更多
To investigate how synonymous codons have been adapted to the formation of ribonucleic acid(RNA)G-quadruplex(rG4)structure,a computational searching algorithm G4Hunter was applied to detect rG4 structures in protein-c...To investigate how synonymous codons have been adapted to the formation of ribonucleic acid(RNA)G-quadruplex(rG4)structure,a computational searching algorithm G4Hunter was applied to detect rG4 structures in protein-coding sequences of mRNAs in five eukaryotic species.The native sequences forming rG4s were then compared with randomized sequences to evaluate selection on synonymous codons.Factors that may influence the formation of rG4 were also investigated,and the selection pressures of rG4 in different gene regions were compared to explore its potential roles in gene regulation.The results show universal selective pressure acts on synonymous codons in rG4 regions to facilitate rG4 formation in five eukaryotic organisms.While G-rich codon combinations are preferred in the rG4 structural region,C-rich codon combinations are selectively unfavorable for rG4 formation.Gene's codon usage bias,nucleotide composition,and evolutionary rate can account for the selective variations on synonymous codons among rG4 structures within a species.Moreover,rG4 structures in the translational initiation region showed significantly higher selective pressures than those in the translational elongation region.展开更多
The conventional transmit antenna selection for Vertical Bell Laboratories Layered Space Time (V-BLAST) system is very complex because it needs to compute the inverse of channel matrices time after time. In this paper...The conventional transmit antenna selection for Vertical Bell Laboratories Layered Space Time (V-BLAST) system is very complex because it needs to compute the inverse of channel matrices time after time. In this paper, a new group transmit antenna selection scheme for V-BLAST system is proposed. The 1st group transmit antennas are decided according to a certain selection criterion among the available antennas. Then, with Group Interference Suppression (GIS) technology, the interferences of the transmit symbols from the selected antennas can be suppressed. Finally, the 2nd group transmit antennas are decided among the residual available antennas. Simulations show that its performance is lower than that of the conventional selection scheme. However, the new selection scheme has lower complexity than the conventional one.展开更多
To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First,...To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First, it extracts the frame coding complexity from two rate distortion models, and then introduces five statistic modes to estimate the frame coding complexity. An optimal mode is selected according to the coding efficiency. Finally the paper presents a novel QP calculation method for the H.264/AVC rate control. Experimental results show that the proposed algorithra outperforms the algorithm integrated in the 3M model in obtaining precise frame coding complexity, achieving robust buffer control and improving coding quality. And the improving visual quality is high up to 0.90dB for CIF sequences.展开更多
Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differenti...Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.展开更多
This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the p...This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the purpose of accomplishing soft input soft output iterative decoding of LDPC codes, a new soft decision metric generation method is proposed,which obviates the need of the noise variance estimation, for M-PSK/M-QAM-type high-order modulation over frequency selective fading channel. Computer simulation indicates that, there is no performance loss with our new metric, but the complexity of implementation is reduced, and that the LDPC codes are effective to improve the Bit Error Rate (BER) of FMT in frequency selective fading channel.展开更多
A new type hybrid automatic repeat request(HARQ) scheme based on orthogonal space-time block code(OSTBC) is proposed and evaluated in multiple-input multiple-output(MIMO) systems.The transmit antennas are selected bas...A new type hybrid automatic repeat request(HARQ) scheme based on orthogonal space-time block code(OSTBC) is proposed and evaluated in multiple-input multiple-output(MIMO) systems.The transmit antennas are selected based on the feedback from the receiver.The modulated symbols are encoded by spacetime block code(STBC) and obtained by space time code blocks which are suitable for the number of selected antennas.The total packet error rate(PER) is given by defining the decoding function and the best value of the maximum number of HARQ retransmissions is discussed.Theory and simulation results illustrate that:this new HARQ scheme with antenna selection method has lower PER and the result is also satisfying.展开更多
To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitatio...To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.展开更多
To maximize the throughput of frequency-selective multicast channel, the minimum-phase Finite Impulse Response (FIR) precoder design is investigated in this paper. This problem can be solved in two steps. Firstly, we ...To maximize the throughput of frequency-selective multicast channel, the minimum-phase Finite Impulse Response (FIR) precoder design is investigated in this paper. This problem can be solved in two steps. Firstly, we focus on designing a nonminimum-phase FIR precoder under the criterion of maximizing the throughput, and develop two efficient algorithms for the FIR precoder design from perspectives of frequency domain and time domain. In the second step, based on the theory of spectral factorization, the nonminimum-phase FIR precoder is transformed into the corresponding minimum-phase FIR precoder by a classic iterative algorithm without affecting the throughput. Numerical results indicate that the achievable rate of the proposed design has remarkable improvement over that of existing schemes, moreover, the group delay introduced by the FIR precoder is minimized.展开更多
An approach combining optimal antenna subset selection with blind detection scheme for Orthogonal Space-Time Block Coding (OSTBC) is proposed in this paper. The optimal antenna sub- set selection is taken into account...An approach combining optimal antenna subset selection with blind detection scheme for Orthogonal Space-Time Block Coding (OSTBC) is proposed in this paper. The optimal antenna sub- set selection is taken into account at transmitter and/or receiver sides, which chooses the optimal an- tennas to increase the diversity order of OSTBC and improve further its performance. In order to en- hance the robustness of the detection used in the conventional OSTBC scheme, a blind detection scheme based on Independent Component Analysis (ICA) is exploited which can directly extract transmitted signals without channel estimation. Performance analysis shows that the proposed ap- proach can achieve the full diversity and the flexibility of system design by using the antenna selec-tion and the ICA based blind detection schemes.展开更多
A Cramer-Shoup scheme was modified in a variant way. The major advantage with respect to Kurosawa-Desmedt scheme is that it saves a key parameter and produces shorter ciphertext. The proof of security shows that our s...A Cramer-Shoup scheme was modified in a variant way. The major advantage with respect to Kurosawa-Desmedt scheme is that it saves a key parameter and produces shorter ciphertext. The proof of security shows that our scheme can be instantiated with any computational secure key derivation and message authentication functions. Thus it extends the applicability of the Kurosawa-Desmedt scheme and improves its efficiency.展开更多
Two new constructions of chosen-ciphertext secure fuzzy identity-based encryption (fuzzy-IBE) schemes without random oracle are proposed. The first scheme combines the modification of chosen-plaintext secure Sahai a...Two new constructions of chosen-ciphertext secure fuzzy identity-based encryption (fuzzy-IBE) schemes without random oracle are proposed. The first scheme combines the modification of chosen-plaintext secure Sahai and Waters' "large universe" construction and authenticated symmetric encryption, and uses con- sistency checking to handle with ill-formed ciphertexts to achieve chosen-ciphertext security in the selective ID model. The second scheme improves the efficiency of first scheme by eliminating consistency checking. This improved scheme is more efficient than existing chosen-ciphertext secure fuzzy-IBE scheme in the standard model.展开更多
In order to reduce the computational complexity of the high efficiency video coding(HEVC) standard, a new algorithm for HEVC intra prediction, namely, fast prediction unit(PU) size selection method for HEVC based on s...In order to reduce the computational complexity of the high efficiency video coding(HEVC) standard, a new algorithm for HEVC intra prediction, namely, fast prediction unit(PU) size selection method for HEVC based on salient regions is proposed in this paper. We first build a saliency map for each largest coding unit(LCU) to reduce its texture complexity. Secondly, the optimal PU size is determined via a scheme that implements an information entropy comparison among sub-blocks of saliency maps. Finally, we apply the partitioning result of saliency map on the original LCUs, obtaining the optimal partitioning result. Our algorithm can determine the PU size in advance to the angular prediction in intra coding, reducing computational complexity of HEVC. The experimental results show that our algorithm achieves a 37.9% reduction in encoding time, while producing a negligible loss in Bjontegaard delta bit rate(BDBR) of 0.62%.展开更多
The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is...The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.展开更多
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a Src homology (SH) domain 2-containing in- tracellular adaptor protein that is predominantly expressed in the hematopoietic system by...Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a Src homology (SH) domain 2-containing in- tracellular adaptor protein that is predominantly expressed in the hematopoietic system by T lymphocytes and NK cells. SAP protein is encoded by the SH2DIA gene located on the X chromosome. Loss-of-function mutations in SAP cause the X-linked lymphoproliferative disease (XLP), a severe immunodeficiency characterized by heightened susceptibility to Epstein-Barr vi- rus and impaired humoral immunity. Normal individuals express several functional and non-functional isoforms of SAP as a result of alternative splicing. In this study, we identify a cryptic exon in the murine Sh2dla gene. At the mRNA level, the new isoform of SAP (SAP-2) that includes this new exon is widely expressed in lymphoid tissues by C57BL/6 and 129 strains of inbred mice. SAP-2 accounts for approximately 1%-3% of total SAP transcripts, and it is dynamically regulated during lym- phocyte activation. At the protein level, the SAP-2 isoform is a 144 amino-acid protein. Compared to the dominant 126 ami- no-acid SAP-I isoform, the additional 18 amino acids are inserted into a structural region that is critical for phosphotyrosine binding. Our functional analysis in vitro indicates that SAP-2 is a non-functional isoform due to decreased protein stability. Thus, both human and mouse have multiple SAP splice isoforms that may or may not function. Modulation of relative propor- tions of these isoforms is potentially a mechanism whereby cells can regulate SAP-mediated biological activities.展开更多
文摘A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous comparator unit,and asynchronous selector unit are proposed.A full-custom design of asynchronous 4-bit ACS processor is fabricated in CSMC-HJ 0.6μm CMOS 2P2M mixed-mode process.At a supply voltage of 5V,when it operates at 20MHz,the power consumption is 75.5mW.The processor has no dynamic power consumption when it awaits an opportunity in sleep mode.The results of performance test of asynchronous 4-bit ACS processor show that the average case response time 19.18ns is only 82% of the worst-case response time 23.37ns.Compared with the synchronous 4-bit ACS processor in power consumption and performance by simulation,it reveals that the asynchronous ACS processor has some advantages than the synchronous one.
基金supported by the National Science Foundation (NSF) under Grants No.60832001,No.61271174 the National State Key Lab oratory of Integrated Service Network (ISN) under Grant No.ISN01080202
文摘To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China under Grant No.61272502the National Basic Research Program of China (973 Program) under Grant No.2010CB327900the National Science Fund for Distinguished Young Scholars under Grant No.61125206
文摘In High Efficiency Video Coding, the Residual Quad-Yree (RQT) coding is used to encode the prediction residual for both intra and inter Coding Units (CU) and provides improved coding gains. However, this results in much higher computational complexities. To address this problem, we develop two fast RQT algorithms for intra- and inter-prediction residual coding respectively. For intra coding, the proposed algorithm selects the best prediction mode in the rate distortion mode decision process using a Prediction Unit (PU) size-dependent fast RQT depth decision on a reduced prediction mode candidates set from the rough mode decision process. For inter coding, in addition to CU size-dependent fast RQT depth decisions, we propose a discriminant analy- sis-based fast depth decision algorithm to det- ermine the best transform unit size. Experimental results show that on average, we can real- ise a 21.29% encoding time saving and 0.03% bit-rate reduction for intra coding, while 15% of the encoding time can be saved with a negligible coding performance loss for inter coding.
基金The National Key Research and Development Program of China(No.2018YFC1314900,2018YFC1314902)the National Natural Science Foundation of China(No.61571109)the Fundamental Research Funds for the Central Universities(No.2242017K3DN04).
文摘To investigate how synonymous codons have been adapted to the formation of ribonucleic acid(RNA)G-quadruplex(rG4)structure,a computational searching algorithm G4Hunter was applied to detect rG4 structures in protein-coding sequences of mRNAs in five eukaryotic species.The native sequences forming rG4s were then compared with randomized sequences to evaluate selection on synonymous codons.Factors that may influence the formation of rG4 were also investigated,and the selection pressures of rG4 in different gene regions were compared to explore its potential roles in gene regulation.The results show universal selective pressure acts on synonymous codons in rG4 regions to facilitate rG4 formation in five eukaryotic organisms.While G-rich codon combinations are preferred in the rG4 structural region,C-rich codon combinations are selectively unfavorable for rG4 formation.Gene's codon usage bias,nucleotide composition,and evolutionary rate can account for the selective variations on synonymous codons among rG4 structures within a species.Moreover,rG4 structures in the translational initiation region showed significantly higher selective pressures than those in the translational elongation region.
文摘The conventional transmit antenna selection for Vertical Bell Laboratories Layered Space Time (V-BLAST) system is very complex because it needs to compute the inverse of channel matrices time after time. In this paper, a new group transmit antenna selection scheme for V-BLAST system is proposed. The 1st group transmit antennas are decided according to a certain selection criterion among the available antennas. Then, with Group Interference Suppression (GIS) technology, the interferences of the transmit symbols from the selected antennas can be suppressed. Finally, the 2nd group transmit antennas are decided among the residual available antennas. Simulations show that its performance is lower than that of the conventional selection scheme. However, the new selection scheme has lower complexity than the conventional one.
基金Supported by the Nat:onal Natural Science Foundation of China (No. 60873185) and the Foundation of Science & Technology Department of Sichuan Province (No. 2011HH0037).
文摘To improve the coding performance of H.264/AVC, this paper proposes a rate control scheme composed of a novel flame complexity optimized selection and a quantization parameter (QP) value computation approach. First, it extracts the frame coding complexity from two rate distortion models, and then introduces five statistic modes to estimate the frame coding complexity. An optimal mode is selected according to the coding efficiency. Finally the paper presents a novel QP calculation method for the H.264/AVC rate control. Experimental results show that the proposed algorithra outperforms the algorithm integrated in the 3M model in obtaining precise frame coding complexity, achieving robust buffer control and improving coding quality. And the improving visual quality is high up to 0.90dB for CIF sequences.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2003AA123310) and the National Natural Science Foundation of China (No. 60272079)
文摘Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.
基金Supported by 863 program of China under Grant 2001AA123015.
文摘This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the purpose of accomplishing soft input soft output iterative decoding of LDPC codes, a new soft decision metric generation method is proposed,which obviates the need of the noise variance estimation, for M-PSK/M-QAM-type high-order modulation over frequency selective fading channel. Computer simulation indicates that, there is no performance loss with our new metric, but the complexity of implementation is reduced, and that the LDPC codes are effective to improve the Bit Error Rate (BER) of FMT in frequency selective fading channel.
文摘A new type hybrid automatic repeat request(HARQ) scheme based on orthogonal space-time block code(OSTBC) is proposed and evaluated in multiple-input multiple-output(MIMO) systems.The transmit antennas are selected based on the feedback from the receiver.The modulated symbols are encoded by spacetime block code(STBC) and obtained by space time code blocks which are suitable for the number of selected antennas.The total packet error rate(PER) is given by defining the decoding function and the best value of the maximum number of HARQ retransmissions is discussed.Theory and simulation results illustrate that:this new HARQ scheme with antenna selection method has lower PER and the result is also satisfying.
文摘To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.
基金Supported by the National Natural Science Foundation of China (No. 61271272)the National Science and Technology Special Projects of China (No. 2012ZX03001007002)the National High Technology Research and Development Program of China (863 Program) (No. 2012AA01A502)
文摘To maximize the throughput of frequency-selective multicast channel, the minimum-phase Finite Impulse Response (FIR) precoder design is investigated in this paper. This problem can be solved in two steps. Firstly, we focus on designing a nonminimum-phase FIR precoder under the criterion of maximizing the throughput, and develop two efficient algorithms for the FIR precoder design from perspectives of frequency domain and time domain. In the second step, based on the theory of spectral factorization, the nonminimum-phase FIR precoder is transformed into the corresponding minimum-phase FIR precoder by a classic iterative algorithm without affecting the throughput. Numerical results indicate that the achievable rate of the proposed design has remarkable improvement over that of existing schemes, moreover, the group delay introduced by the FIR precoder is minimized.
基金Partially supported by National Natural Science Foun-dation of China (60572105)Open Foundations of the State Key Laboratory of Mobile Communications (A200508)+1 种基金the State Key Lab of Integrated Services Networks (ISN7-02)the Program for New Century Excellent Talents (NCET-05-0582) in University.
文摘An approach combining optimal antenna subset selection with blind detection scheme for Orthogonal Space-Time Block Coding (OSTBC) is proposed in this paper. The optimal antenna sub- set selection is taken into account at transmitter and/or receiver sides, which chooses the optimal an- tennas to increase the diversity order of OSTBC and improve further its performance. In order to en- hance the robustness of the detection used in the conventional OSTBC scheme, a blind detection scheme based on Independent Component Analysis (ICA) is exploited which can directly extract transmitted signals without channel estimation. Performance analysis shows that the proposed ap- proach can achieve the full diversity and the flexibility of system design by using the antenna selec-tion and the ICA based blind detection schemes.
基金the National Basic Research Program(973) of China (No 2007CB807903)the National Natural Science Foundation of China (No. 60743006)+1 种基金the Natural Science Foundation of Shandong Province(No. Y2007G15)the Shandong Grant program for Post PH.D (No. 200601002)
文摘A Cramer-Shoup scheme was modified in a variant way. The major advantage with respect to Kurosawa-Desmedt scheme is that it saves a key parameter and produces shorter ciphertext. The proof of security shows that our scheme can be instantiated with any computational secure key derivation and message authentication functions. Thus it extends the applicability of the Kurosawa-Desmedt scheme and improves its efficiency.
基金the National High Technology Research and Development Program (863) of China(No. 2006AA12A106)
文摘Two new constructions of chosen-ciphertext secure fuzzy identity-based encryption (fuzzy-IBE) schemes without random oracle are proposed. The first scheme combines the modification of chosen-plaintext secure Sahai and Waters' "large universe" construction and authenticated symmetric encryption, and uses con- sistency checking to handle with ill-formed ciphertexts to achieve chosen-ciphertext security in the selective ID model. The second scheme improves the efficiency of first scheme by eliminating consistency checking. This improved scheme is more efficient than existing chosen-ciphertext secure fuzzy-IBE scheme in the standard model.
文摘In order to reduce the computational complexity of the high efficiency video coding(HEVC) standard, a new algorithm for HEVC intra prediction, namely, fast prediction unit(PU) size selection method for HEVC based on salient regions is proposed in this paper. We first build a saliency map for each largest coding unit(LCU) to reduce its texture complexity. Secondly, the optimal PU size is determined via a scheme that implements an information entropy comparison among sub-blocks of saliency maps. Finally, we apply the partitioning result of saliency map on the original LCUs, obtaining the optimal partitioning result. Our algorithm can determine the PU size in advance to the angular prediction in intra coding, reducing computational complexity of HEVC. The experimental results show that our algorithm achieves a 37.9% reduction in encoding time, while producing a negligible loss in Bjontegaard delta bit rate(BDBR) of 0.62%.
基金Project supported by the National Basic Research Program (973) of China (No. 61331903) and the National Natural Science Foundation of China (Nos. 61175008 and 61673265)
文摘The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.
基金supported by funds from the Tsing-hua-Peking Center for Life Sciencesthe National Natural Science Foundation of China(81072464)
文摘Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a Src homology (SH) domain 2-containing in- tracellular adaptor protein that is predominantly expressed in the hematopoietic system by T lymphocytes and NK cells. SAP protein is encoded by the SH2DIA gene located on the X chromosome. Loss-of-function mutations in SAP cause the X-linked lymphoproliferative disease (XLP), a severe immunodeficiency characterized by heightened susceptibility to Epstein-Barr vi- rus and impaired humoral immunity. Normal individuals express several functional and non-functional isoforms of SAP as a result of alternative splicing. In this study, we identify a cryptic exon in the murine Sh2dla gene. At the mRNA level, the new isoform of SAP (SAP-2) that includes this new exon is widely expressed in lymphoid tissues by C57BL/6 and 129 strains of inbred mice. SAP-2 accounts for approximately 1%-3% of total SAP transcripts, and it is dynamically regulated during lym- phocyte activation. At the protein level, the SAP-2 isoform is a 144 amino-acid protein. Compared to the dominant 126 ami- no-acid SAP-I isoform, the additional 18 amino acids are inserted into a structural region that is critical for phosphotyrosine binding. Our functional analysis in vitro indicates that SAP-2 is a non-functional isoform due to decreased protein stability. Thus, both human and mouse have multiple SAP splice isoforms that may or may not function. Modulation of relative propor- tions of these isoforms is potentially a mechanism whereby cells can regulate SAP-mediated biological activities.