[Objective] To explore the feasibility of using SYBR Green real-time quantitative PCR technique to estimate the copy numbers of exogenous gene in a transgenic plant.[Methods] Using SYBR Green real-time quantitative PC...[Objective] To explore the feasibility of using SYBR Green real-time quantitative PCR technique to estimate the copy numbers of exogenous gene in a transgenic plant.[Methods] Using SYBR Green real-time quantitative PCR technique,we have determined the copy numbers of the exogenous CYCD3;1 in transgenic Arabidopsis by comparing an endogenous single copy reference gene with CYCD3;1 copy numbers in transgenic plant,meanwhile comparing CYCD3;1 copy numbers between wild plant and transgenic plant.[Results]The exogenous CYCD3;1 copy numbers calculated by this method is identical with results of traditional Southern blot analysis which is highly accurate.[Conclusion]This method is simple,effective and safe for estimating transgene copy numbers.展开更多
OBJECTIVE: To examine the feasibility of linking operons in tandem to enhance expression of heterologous genes in Escherichia coli (E. coli) and clarify the potential control mechanism of the total plasmid DNA amount ...OBJECTIVE: To examine the feasibility of linking operons in tandem to enhance expression of heterologous genes in Escherichia coli (E. coli) and clarify the potential control mechanism of the total plasmid DNA amount in each host cell. METHODS: Two series of expression plasmids, CW11 and CW12, containing 1 to 4 and 1 to 3 heterologous gene operon(s) respectively, were constructed. The molecular size of the CW11 series varied from 5.47 kb to 12.26 kb in 2.25 kb increments. The CW12 series varied from 5.40 kb to 9.72 kb in 2.16 kb increments. The expression level of desired protein was assayed by SDS-PAGE and laser density scanning. Plasmid copy number was determined by incorporation with (3)H-thymidine ((3)H-TdR). RESULTS: No influence of the tandem-joined operons on host growth and plasmid stability was observed. Upon induction, the desired protein accumulations in the CW11 series were 44.9% +/- 3.9%, 51.3% +/- 4.1%, 54.8% +/- 3.3% and 58.2% +/- 3.4% of total cell protein. In the CW12 series, the yields were 32.2% +/- 5.0%, 42.8% +/- 4.1% and 46.9% +/- 4.0% of total cell protein. As size increased, the plasmid copy number decreased, but target gene dosage increased significantly (P 0.05) and restricted to some extent. CONCLUSIONS: Increasing the target gene dosage by tandem linking of operons may enhance the expression level of a desired protein. Although the size (kb) and the copy number of each plasmid are negatively interrelated, for certain plasmids in each series, their total DNA amount per cell seems to be a restricted constant for specific E. coli strains under identical incubation condition.展开更多
In this paper, we study the problem of multicopy quantum two-state discrimination. By exploring the quantum hypothesis testing, i.e., the probabilisfic quantum cloning, we derive the upper bounds of the minimal error ...In this paper, we study the problem of multicopy quantum two-state discrimination. By exploring the quantum hypothesis testing, i.e., the probabilisfic quantum cloning, we derive the upper bounds of the minimal error discrimination (MED) and the optimal unambiguous discrimination (OUD), which coincides with the Helstrom theorem and the JS limit. Furthermore, when prior probabilities are unknown, we derive the minimax MED and the minimax OUD. Based on the optimal NM probabilistic quantum cloning, we present the optimal strategies of collective measurements of the MED and the OUD. When the number of the copies is infinite, regardless of whether prior probabilities are known or not, the success probabilities of the MED and the OUD go to 100%, in accordance with the quantum measurement hypothesis that unknown quantum state can be determined if and only if infinite identical quantum state copies are given.展开更多
The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d...The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d-dimensions. As d→∞ , their clone fidelities move toward 1/3, showing a classical limit for the fidelity of quantum cloning. Based on the reduction of the unitary transformation of quantum cloning, the transformation of the 1→M=d+1 optimal economical phase-covariant quantum cloning in d-dimensions is derived, and the clone fidelity is covered by the theoretical value.展开更多
基金Supported by National Natural Science Foundation Project(30270086)~~
文摘[Objective] To explore the feasibility of using SYBR Green real-time quantitative PCR technique to estimate the copy numbers of exogenous gene in a transgenic plant.[Methods] Using SYBR Green real-time quantitative PCR technique,we have determined the copy numbers of the exogenous CYCD3;1 in transgenic Arabidopsis by comparing an endogenous single copy reference gene with CYCD3;1 copy numbers in transgenic plant,meanwhile comparing CYCD3;1 copy numbers between wild plant and transgenic plant.[Results]The exogenous CYCD3;1 copy numbers calculated by this method is identical with results of traditional Southern blot analysis which is highly accurate.[Conclusion]This method is simple,effective and safe for estimating transgene copy numbers.
基金ThisstudywassupportedbyagrantfromtheNationalHighTechnologyResearchandDevelopmentProgram (No .10 2 0 8 0 20 2)
文摘OBJECTIVE: To examine the feasibility of linking operons in tandem to enhance expression of heterologous genes in Escherichia coli (E. coli) and clarify the potential control mechanism of the total plasmid DNA amount in each host cell. METHODS: Two series of expression plasmids, CW11 and CW12, containing 1 to 4 and 1 to 3 heterologous gene operon(s) respectively, were constructed. The molecular size of the CW11 series varied from 5.47 kb to 12.26 kb in 2.25 kb increments. The CW12 series varied from 5.40 kb to 9.72 kb in 2.16 kb increments. The expression level of desired protein was assayed by SDS-PAGE and laser density scanning. Plasmid copy number was determined by incorporation with (3)H-thymidine ((3)H-TdR). RESULTS: No influence of the tandem-joined operons on host growth and plasmid stability was observed. Upon induction, the desired protein accumulations in the CW11 series were 44.9% +/- 3.9%, 51.3% +/- 4.1%, 54.8% +/- 3.3% and 58.2% +/- 3.4% of total cell protein. In the CW12 series, the yields were 32.2% +/- 5.0%, 42.8% +/- 4.1% and 46.9% +/- 4.0% of total cell protein. As size increased, the plasmid copy number decreased, but target gene dosage increased significantly (P 0.05) and restricted to some extent. CONCLUSIONS: Increasing the target gene dosage by tandem linking of operons may enhance the expression level of a desired protein. Although the size (kb) and the copy number of each plasmid are negatively interrelated, for certain plasmids in each series, their total DNA amount per cell seems to be a restricted constant for specific E. coli strains under identical incubation condition.
基金supported by the National Natural Science Foundation of China (Grant No. 10704001)the Natural Science Foundation of the Education Department of Anhui Province of China (Grant Nos. KJ2010ZD08 and KJ2010B204)the Doctor Research Start-Up Program of Huainan Normal University
文摘In this paper, we study the problem of multicopy quantum two-state discrimination. By exploring the quantum hypothesis testing, i.e., the probabilisfic quantum cloning, we derive the upper bounds of the minimal error discrimination (MED) and the optimal unambiguous discrimination (OUD), which coincides with the Helstrom theorem and the JS limit. Furthermore, when prior probabilities are unknown, we derive the minimax MED and the minimax OUD. Based on the optimal NM probabilistic quantum cloning, we present the optimal strategies of collective measurements of the MED and the OUD. When the number of the copies is infinite, regardless of whether prior probabilities are known or not, the success probabilities of the MED and the OUD go to 100%, in accordance with the quantum measurement hypothesis that unknown quantum state can be determined if and only if infinite identical quantum state copies are given.
基金supported by the National Natural Science Foundation of China (Grant No.10704001)the Natural Science Foundation of the Education Department of Anhui Province of China (Grant Nos.KJ2010ZD08 and KJ2010B204)the Doctor Research Start-Up Program of Huainan Normal University
文摘The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d-dimensions. As d→∞ , their clone fidelities move toward 1/3, showing a classical limit for the fidelity of quantum cloning. Based on the reduction of the unitary transformation of quantum cloning, the transformation of the 1→M=d+1 optimal economical phase-covariant quantum cloning in d-dimensions is derived, and the clone fidelity is covered by the theoretical value.