Low-impact development (LID) technologies have a great potential to reduce water usage and stormwa- ter runoff and are therefore seen as sustainable improvements that can be made to traditional water infrastructure,...Low-impact development (LID) technologies have a great potential to reduce water usage and stormwa- ter runoff and are therefore seen as sustainable improvements that can be made to traditional water infrastructure, These technologies include bioretention areas, rainwater capturing, and xeriscaping, all of which can be used in residential zones, Within the City of Atlanta, residential water usage accounts for 53% of the total water consumption; therefore, residential zones offer significant impact potential for the implementation of LID, This study analyzes the use of LID strategies within the different residen- tial zones of the City of Atlanta from an ecological perspective by drawing analogies to natural ecosys- tems, The analysis shows that these technologies, especially with the addition of a graywater system, work to improve the conventional residential water network based upon these ecological metrics, The higher metric values suggest greater parity with healthy, natural ecosystems.展开更多
In this paper, for a sustainable building in a Mediterranean climate areas, the relation between envelope and energy is discussed. The relation between envelopes and energy has been considered in all the phases of the...In this paper, for a sustainable building in a Mediterranean climate areas, the relation between envelope and energy is discussed. The relation between envelopes and energy has been considered in all the phases of the life building (construction phase and during operation). This has been made through global assessment of massive envelopes (with or without insulation) realized with blocks of different materials: natural stone, concrete and brick. For these types of envelope the thermal comfort of the rooms, the energy requirement for cooling and heating, economic and environmental aspects (costs and embodied energy) in the life cycle of the building have been studied.展开更多
Time and cost are two of the most important factors to consider in each construction project. In order to maximize performance, both the client and the contractor will work to optimize both the duration of the project...Time and cost are two of the most important factors to consider in each construction project. In order to maximize performance, both the client and the contractor will work to optimize both the duration of the project and its cost. We show a model of linear entire mixed programming to solve the considered problem. The aim is to minimize the project total time, by means of the assignment of equipments of work to the different production lines of the activities to realizing. The fundamental beginning is to support the same production (rate of production in meters/day of the activity in view of the equipment of work) for tbe different equipments to achieve the maximum efficiency in each period of time. With the limited availability of resources, the work must be continuous and the period of time between operations and final must be kept. However, this paper also presents the bibliographical study on methodologies of the optimization of construction processes in response to the two objectives: time and cost. This will consider the use of recta-heuristic techniques, such as population based algorithms.展开更多
The sustainable design approach presented in this paper supports an increased commitment to environmental stewardship and conservation, and results in an optimal balance of cost, environmental, societal, and human ben...The sustainable design approach presented in this paper supports an increased commitment to environmental stewardship and conservation, and results in an optimal balance of cost, environmental, societal, and human benefits while meeting the mission and function of the intended space structure. The aim of this paper is to develop the guidelines that could be applied in the design of a space structure in order to achieve the optimal overall lifetime performance of the space structure. Space structures are more than inanimate hunks of metal, glass and fabric. Every space structure that we design as structural engineers is like a child - a child that is conceived with a passionate vision of its form, structure and purpose; nurtured through the schematic design phase and the development of construction documents; and cared for during the labor pains of plan check corrections, requests for information, shop drawing review, and construction observation. Like children, our space structures mature, perform necessary functions during their lives, and eventually, grow old and die. The design of a sustainable space structure is a much more challenging and cross-disciplinary process than in the past and therefore it is necessary that the space structure is viewed as an integrated system and that all members of the design team work in a fully integrated fashion.展开更多
Materials and energy are transferred between natural and industrial systems, providing a standard that can be used to deduce the interactions between these systems, An examination of these flows is an essen- tial part...Materials and energy are transferred between natural and industrial systems, providing a standard that can be used to deduce the interactions between these systems, An examination of these flows is an essen- tial part of the conversation on how industry impacts the environment, We propose that biological sys- tems, which embody sustainability, provide methods and principles that can lead to more useful ways to organize industrial activity, Transposing these biological methods to steel manufacturing is manifested through an efficient use of available materials, waste reduction, and decreased energy demand with cur- rently available technology, In this paper, we use ecological metrics to examine the change in structure and flows of materials in the Chinese steel industry over time by means of a systems-based mass flow analysis, Utilizing available data, the results of our analysis indicate that the Chinese steel manufacturing industry has increased its efficiency and sustainable use of resources over time at the unit process level, However, the appropriate organization of the steel production ecosystem remains a work in progress, Our results suggest that through the intelligent placement of cooperative industries, which can utilize the waste generated from steel manufacturing, the future of the Chinese steel industry can better reflect ecosystem maturity and health while minimizing waste.展开更多
Construction management innovation system of metro in China is put forward in this paper. Guidelines,objective system,new management ideas and contents of this construction management innovation system are set forth p...Construction management innovation system of metro in China is put forward in this paper. Guidelines,objective system,new management ideas and contents of this construction management innovation system are set forth particularly. The construction management innovation system of metro can meet needs of building harmonious and economized society and realizing sustainable development in China,it is also an important part of science & technology innovation system.展开更多
Sustainable construction, together with sustainability, is a growing concern in developed countries in order to influence construction organizations to make "achieving sustainability" in their projects a stringent p...Sustainable construction, together with sustainability, is a growing concern in developed countries in order to influence construction organizations to make "achieving sustainability" in their projects a stringent prior objective. North Cyprus is a rapidly developing country with an annual economic growth of 7%. Construction became the leading sector within the economy after the boom in demand for holiday and retirement houses especially from English and German holidaymakers. Due to lack of government policy on sustainability, developers usually use traditional ways of construction, and the lack of an established link with international construction, which would help local developers be aware of the latest technology and sustainable building techniques, is the main challenges for North Cyprus construction sector to develop sustainable construction practices.展开更多
Sustainability is popularly defined as meeting the needs of the present generation without compromising the ability of future generations to meet their own needs. Social, economic and environmental parameters are most...Sustainability is popularly defined as meeting the needs of the present generation without compromising the ability of future generations to meet their own needs. Social, economic and environmental parameters are most commonly accepted as the three pillars of sustainability. In this paper, various sustainability indicators have been identified during the construction stage for elevated transportation corridors and thereafter classified under various categories. Using fuzzy VIKOR technique, sustainability evaluation of transportation corridors is made on two selected project sites of two different government organizations using various identified sustainability indicators, i.e., a 3.2-km long elevated road project under construction from Vikaspuri to Meerabagh in West Delhi by PWD (Public Works Department) and the metro rail elevated corridor (part) from Punjabi Bagh to Mayapuri as a part of Phase 3, Line 7 by DMRC (Delhi Metro Rail Corporation). The study is made at both sites in the midst of the construction period and it is identified that during the construction stage, the sustainability of these transportation corridors is just not limited to three pillars, but in actuality, it is much beyond that. From the study, it is inferred that the metro rail elevated corridor is a more sustainable corridor, in the context of the identified sustainability indicators.展开更多
基金This work was supported by a grant for "Resilient Interdependent Infrastructure Processes and Systems (RIPS) Type 2: Participatory Modeling of Complex Urban Infrastructure Systems (Model Urban SysTems)" (#0836046) from the National Science Foundation, Division of Emerging Frontiers in Research and Innovations (EFRI). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors acknowledge the work of Jeong et al. for the use of data and support in this analysis.
文摘Low-impact development (LID) technologies have a great potential to reduce water usage and stormwa- ter runoff and are therefore seen as sustainable improvements that can be made to traditional water infrastructure, These technologies include bioretention areas, rainwater capturing, and xeriscaping, all of which can be used in residential zones, Within the City of Atlanta, residential water usage accounts for 53% of the total water consumption; therefore, residential zones offer significant impact potential for the implementation of LID, This study analyzes the use of LID strategies within the different residen- tial zones of the City of Atlanta from an ecological perspective by drawing analogies to natural ecosys- tems, The analysis shows that these technologies, especially with the addition of a graywater system, work to improve the conventional residential water network based upon these ecological metrics, The higher metric values suggest greater parity with healthy, natural ecosystems.
文摘In this paper, for a sustainable building in a Mediterranean climate areas, the relation between envelope and energy is discussed. The relation between envelopes and energy has been considered in all the phases of the life building (construction phase and during operation). This has been made through global assessment of massive envelopes (with or without insulation) realized with blocks of different materials: natural stone, concrete and brick. For these types of envelope the thermal comfort of the rooms, the energy requirement for cooling and heating, economic and environmental aspects (costs and embodied energy) in the life cycle of the building have been studied.
文摘Time and cost are two of the most important factors to consider in each construction project. In order to maximize performance, both the client and the contractor will work to optimize both the duration of the project and its cost. We show a model of linear entire mixed programming to solve the considered problem. The aim is to minimize the project total time, by means of the assignment of equipments of work to the different production lines of the activities to realizing. The fundamental beginning is to support the same production (rate of production in meters/day of the activity in view of the equipment of work) for tbe different equipments to achieve the maximum efficiency in each period of time. With the limited availability of resources, the work must be continuous and the period of time between operations and final must be kept. However, this paper also presents the bibliographical study on methodologies of the optimization of construction processes in response to the two objectives: time and cost. This will consider the use of recta-heuristic techniques, such as population based algorithms.
文摘The sustainable design approach presented in this paper supports an increased commitment to environmental stewardship and conservation, and results in an optimal balance of cost, environmental, societal, and human benefits while meeting the mission and function of the intended space structure. The aim of this paper is to develop the guidelines that could be applied in the design of a space structure in order to achieve the optimal overall lifetime performance of the space structure. Space structures are more than inanimate hunks of metal, glass and fabric. Every space structure that we design as structural engineers is like a child - a child that is conceived with a passionate vision of its form, structure and purpose; nurtured through the schematic design phase and the development of construction documents; and cared for during the labor pains of plan check corrections, requests for information, shop drawing review, and construction observation. Like children, our space structures mature, perform necessary functions during their lives, and eventually, grow old and die. The design of a sustainable space structure is a much more challenging and cross-disciplinary process than in the past and therefore it is necessary that the space structure is viewed as an integrated system and that all members of the design team work in a fully integrated fashion.
基金supported by the National Science Foundation (CBET-1510531 and EFMA-1441208)
文摘Materials and energy are transferred between natural and industrial systems, providing a standard that can be used to deduce the interactions between these systems, An examination of these flows is an essen- tial part of the conversation on how industry impacts the environment, We propose that biological sys- tems, which embody sustainability, provide methods and principles that can lead to more useful ways to organize industrial activity, Transposing these biological methods to steel manufacturing is manifested through an efficient use of available materials, waste reduction, and decreased energy demand with cur- rently available technology, In this paper, we use ecological metrics to examine the change in structure and flows of materials in the Chinese steel industry over time by means of a systems-based mass flow analysis, Utilizing available data, the results of our analysis indicate that the Chinese steel manufacturing industry has increased its efficiency and sustainable use of resources over time at the unit process level, However, the appropriate organization of the steel production ecosystem remains a work in progress, Our results suggest that through the intelligent placement of cooperative industries, which can utilize the waste generated from steel manufacturing, the future of the Chinese steel industry can better reflect ecosystem maturity and health while minimizing waste.
文摘Construction management innovation system of metro in China is put forward in this paper. Guidelines,objective system,new management ideas and contents of this construction management innovation system are set forth particularly. The construction management innovation system of metro can meet needs of building harmonious and economized society and realizing sustainable development in China,it is also an important part of science & technology innovation system.
文摘Sustainable construction, together with sustainability, is a growing concern in developed countries in order to influence construction organizations to make "achieving sustainability" in their projects a stringent prior objective. North Cyprus is a rapidly developing country with an annual economic growth of 7%. Construction became the leading sector within the economy after the boom in demand for holiday and retirement houses especially from English and German holidaymakers. Due to lack of government policy on sustainability, developers usually use traditional ways of construction, and the lack of an established link with international construction, which would help local developers be aware of the latest technology and sustainable building techniques, is the main challenges for North Cyprus construction sector to develop sustainable construction practices.
文摘Sustainability is popularly defined as meeting the needs of the present generation without compromising the ability of future generations to meet their own needs. Social, economic and environmental parameters are most commonly accepted as the three pillars of sustainability. In this paper, various sustainability indicators have been identified during the construction stage for elevated transportation corridors and thereafter classified under various categories. Using fuzzy VIKOR technique, sustainability evaluation of transportation corridors is made on two selected project sites of two different government organizations using various identified sustainability indicators, i.e., a 3.2-km long elevated road project under construction from Vikaspuri to Meerabagh in West Delhi by PWD (Public Works Department) and the metro rail elevated corridor (part) from Punjabi Bagh to Mayapuri as a part of Phase 3, Line 7 by DMRC (Delhi Metro Rail Corporation). The study is made at both sites in the midst of the construction period and it is identified that during the construction stage, the sustainability of these transportation corridors is just not limited to three pillars, but in actuality, it is much beyond that. From the study, it is inferred that the metro rail elevated corridor is a more sustainable corridor, in the context of the identified sustainability indicators.