期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种Android恶意软件检测模型
被引量:
5
1
作者
杨宏宇
那玉琢
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2019年第3期45-51,共7页
针对传统Android恶意软件检测方法检测精度较低等不足,提出一种基于双通道卷积神经网络的Android恶意软件检测模型。首先,提取应用程序的原始操作码序列并生成指令功能序列;然后,将两种序列分别作为卷积神经网络两个通道的输入迭代训练...
针对传统Android恶意软件检测方法检测精度较低等不足,提出一种基于双通道卷积神经网络的Android恶意软件检测模型。首先,提取应用程序的原始操作码序列并生成指令功能序列;然后,将两种序列分别作为卷积神经网络两个通道的输入迭代训练并调整各层神经元权重;最后,通过已训练的检测模型实现对Android恶意软件的检测。实验结果表明,该检测模型对恶意软件具有较好的检测分类精度和检测准确率。
展开更多
关键词
恶意软件
分类检测
操作码
序列
指令功能序列
卷积神经网络
下载PDF
职称材料
题名
一种Android恶意软件检测模型
被引量:
5
1
作者
杨宏宇
那玉琢
机构
中国民航大学计算机科学与技术学院
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2019年第3期45-51,共7页
基金
国家自然科学基金民航联合研究基金(U1833107)
国家科技重大专项(2012ZX03002002)
文摘
针对传统Android恶意软件检测方法检测精度较低等不足,提出一种基于双通道卷积神经网络的Android恶意软件检测模型。首先,提取应用程序的原始操作码序列并生成指令功能序列;然后,将两种序列分别作为卷积神经网络两个通道的输入迭代训练并调整各层神经元权重;最后,通过已训练的检测模型实现对Android恶意软件的检测。实验结果表明,该检测模型对恶意软件具有较好的检测分类精度和检测准确率。
关键词
恶意软件
分类检测
操作码
序列
指令功能序列
卷积神经网络
Keywords
malware
classification detection
opcode sequence
command function sequence
convolutional neural network
分类号
TP309 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种Android恶意软件检测模型
杨宏宇
那玉琢
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2019
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部