Nanoindentation experiments were conducted under loading rates of 500–6000μN/s and applied peak loads of 4000-12000μN to measure the creep behavior of DD407 Ni-base single crystal superalloy at room temperature.Exp...Nanoindentation experiments were conducted under loading rates of 500–6000μN/s and applied peak loads of 4000-12000μN to measure the creep behavior of DD407 Ni-base single crystal superalloy at room temperature.Experimental results demonstrated that DD407 Ni-base single crystal superalloy had a good creep resistance,but its creep properties were sensitive to the loading rate and peak load.The fitting creep parameters significantly increased with increasing loading rate and peak load based on the Findley’s model,and the corresponding creep mechanism was governed by dislocation based on the calculation of creep stress exponent.During nanoindentation creep tests,it was found that the hardness and reduced modulus decreased with increasing the loading rate and peak load,and through a dimensionless analysis,it was also noted that the effect of the dimensionless loading rate was stronger than that of dimensionless peak load on the creep properties.展开更多
Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel m...Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel method was proposed to estimate the equivalent strain hardening exponent of anisotropic materials based on an equivalent energy method. By performing extensive finite element (FE) simulations of the spherical indentation on anisotropic materials, dimensionless function was proposed to correlate the strain hardening exponent of anisotropic materials with the indentation imprint parameters. And then, a mathematic expression on the strain hardening exponent of anisotropic materials with the indentation imprint was established to estimate the equivalent strain hardening exponent of anisotropic materials by directly solving this dimensionless function. Additionally, Meyer equation was modified to determine the yield stress of anisotropic materials. The effectiveness and reliability of the new method were verified by the numerical examples and by its application on the TC1M engineering material.展开更多
基金financial supports from the National Natural Science Foundation of China(Nos.11772236,11472195)。
文摘Nanoindentation experiments were conducted under loading rates of 500–6000μN/s and applied peak loads of 4000-12000μN to measure the creep behavior of DD407 Ni-base single crystal superalloy at room temperature.Experimental results demonstrated that DD407 Ni-base single crystal superalloy had a good creep resistance,but its creep properties were sensitive to the loading rate and peak load.The fitting creep parameters significantly increased with increasing loading rate and peak load based on the Findley’s model,and the corresponding creep mechanism was governed by dislocation based on the calculation of creep stress exponent.During nanoindentation creep tests,it was found that the hardness and reduced modulus decreased with increasing the loading rate and peak load,and through a dimensionless analysis,it was also noted that the effect of the dimensionless loading rate was stronger than that of dimensionless peak load on the creep properties.
基金Project(51675431)supported by the National Natural Science Foundation of China
文摘Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel method was proposed to estimate the equivalent strain hardening exponent of anisotropic materials based on an equivalent energy method. By performing extensive finite element (FE) simulations of the spherical indentation on anisotropic materials, dimensionless function was proposed to correlate the strain hardening exponent of anisotropic materials with the indentation imprint parameters. And then, a mathematic expression on the strain hardening exponent of anisotropic materials with the indentation imprint was established to estimate the equivalent strain hardening exponent of anisotropic materials by directly solving this dimensionless function. Additionally, Meyer equation was modified to determine the yield stress of anisotropic materials. The effectiveness and reliability of the new method were verified by the numerical examples and by its application on the TC1M engineering material.