The research established land degradation monitoring and assessment in- dex system of farmland ecosystem under influence of human activities, including farming system, measures, mulch residuals, fertilizer pollutions,...The research established land degradation monitoring and assessment in- dex system of farmland ecosystem under influence of human activities, including farming system, measures, mulch residuals, fertilizer pollutions, pesticide pollution, irrigation method, salt content of soils, engineering measures of discharging alkali, agricultural protection forests and poverty. The indices of the system are accessible, and convenient for operation, which is suitable for land managers self-monitoring, re- ducing irrational farming activities, improving farmland productivity and preventing farmland degradation.展开更多
According to the natural ecology and socio-economic conditions in Henan Province, a land use regionalization index system with 6 factors and 24 factor layers was constructed by combining with the characteristics of la...According to the natural ecology and socio-economic conditions in Henan Province, a land use regionalization index system with 6 factors and 24 factor layers was constructed by combining with the characteristics of land use in Henan Province. Expert scoring method was used to determine the weights of the indicators. Based on the similarities and differences of these factors in the index system at county (city, district) levels, hierarchical clustering method was used to make the quantitative analysis to the land use regionalization in Henan Province. And constrastive analysis and qualitative analysis were made to the regionalization scheme by combining with the acutal conditions in the counties (cities, districts), and finally, Henan Province was classified into 6 regions.展开更多
Based on the theory of information entropy, time series and spatial variation of land use changes of Bijie City in 2009-2013 were analyzed from different dimensions such as land use degree and land use diversity. The ...Based on the theory of information entropy, time series and spatial variation of land use changes of Bijie City in 2009-2013 were analyzed from different dimensions such as land use degree and land use diversity. The result showed that in 2009-2013, the forest vegetation was well protected, and the construction land was under reasonable expansion under the influence of economic development, the land use degree of which developed gradually to width and depth, and the trend of information entropy showed a graduate increase, indicating that land use scale became more reasonable and the area of different land type became more balanced in Bijie in the period. The study results showed that land resources in Bijie City were used rationally under the strategy from central government local government,and Bijie was in the benign development of economic development—resource distribution—scale change. Moreover, Bijie chould further improve land use pattern such as redevelop stock construction land, optimize the industrial land use pattern and mountain agricultural land development in the future.展开更多
In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. S...In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. Satellite-based land use/land cover(LULC), land surface temperature(LST), normalized difference vegetation index(NDVI) are used to investigate the effects. The study shows that LULC around meteorological stations changed significantly due to urban expansion. Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations. Moreover, the normalized LST and NDVI exhibit strong inverse correlations around meteorological stations, so the variability of LST can be monitored through evaluating the variability of NDVI. In addition, station-relocation plays an important role in improving representativeness of thermal environment. Notably, the environment representativeness was improved, but when using the data from the station to study climate change, the relocation-induced inhomogeneous data should be considered and adjusted. Consequently,controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation. The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.展开更多
Eleven soil types, which can be identified and delineated using conventional soil survey procedures, were characterized for loblolly pine (Pinus taeda L.) productivity. Four 4-hectare study sites, each containing fo...Eleven soil types, which can be identified and delineated using conventional soil survey procedures, were characterized for loblolly pine (Pinus taeda L.) productivity. Four 4-hectare study sites, each containing four measurement plots, were established for every soil type studied. In a stepwise multiple regression, both soil parent material (i.e. a combination of subsoil texture and geology) (p〈0.001), and drainage class (p=0.006) were significant predictors of site index (tree age 25), and the overall linear regression model had an R2 value of 0.55. The extremes of soil parent material differed by 3.9 m site index (loamy subsoil on the Wicomico-Penholoway surfaces versus clayey subsoil on the Pamlico-Princess Anne surfaces). Each increment of drainage class differed by 0.7 m site index. For example, a poorly drained soil had 0.7 m lower site index than a somewhat poorly drained soil. For seven of the eleven soil types studied, there is greater than 80% probability that estimated mean site index is within ±0.8 m of the actual soil type mean site index. The other four soil types (labeled G, I, C and K) need to be either redefined or sampled more intensively. Two of these need to be subdivided in order to adequately characterize site quality, one based on geology (Soil type G) and one based on soil drainage class (Soil type I). Variation in soil drainage class and varying amounts of topsoil displaced into windrows were both factors influencing site quality variation of a third soil type (Soil type C). The wide variation in site index data for a fourth soil type (Soil type K) appeared to be due, in part, to sampling study locations and individual measurement plots with less than optimum bedding and/or artificial drainage. Soil parent material (subsoil texture and geology) along with drainage class were found to be important factors influencing site quality on the South Carolina Lower Coastal Plain.展开更多
Geochemical, mineralogical, and micromorphologieal characteristics of soils and their relevant parent rocks including loess, ignimbrite, sandstone and limestone were investigated to identify the soil-parent material u...Geochemical, mineralogical, and micromorphologieal characteristics of soils and their relevant parent rocks including loess, ignimbrite, sandstone and limestone were investigated to identify the soil-parent material uniformity and the weathering degree of soils in Golestan Province, northern Iran. Highly developed Caleixerolls and moderately developed Haploxerepts were formed on loess and limestone, respectively. In contrast, the soils formed on ignimbrite and sandstone were non- developed Entisols. Illite was the dominant clay mineral found in ignimbrite and sandstone in both the A horizon and parent material. In loess derived soils however, smectite was dominant especially in the Bt horizon compared to its parent material indicating partly to its pedogenic formation. In limestone, illite and vermiculite were dominant both in the A and C horizons. Ti/Zr ratio proved that the studied soils were closely related to their underlying parent materials geochemically. Chemical index of alteration (CIA), micromorphological index of soil development (MISECA), smectite/illite+chlorite ratio and magnetic susceptibility were applied to investigate the degree of soil development. Results showed that the most and the least developed soils were those formed on loess deposits and limestone,respectively. Application of the different geochemical and pedogenetic approaches was proved to be useful in identifying the relevance of soils to their underlying parent materials and also their degree of development.展开更多
Road network is a corridor system that interacts with surrounding landscapes,and understanding their interaction helps to develop an optimal plan for sustainable transportation and land use.This study investigates the...Road network is a corridor system that interacts with surrounding landscapes,and understanding their interaction helps to develop an optimal plan for sustainable transportation and land use.This study investigates the relationships between road centrality and landscape patterns in the Wuhan Metropolitan Area,China.The densities of centrality measures,including closeness,betweenness,and straightness,are calculated by kernel density estimation(KDE).The landscape patterns are characterized by four landscape metrics,including percentage of landscape(PLAND),Shannon′s diversity index(SHDI),mean patch size(MPS),and mean shape index(MSI).Spearman rank correlation analysis is then used to quantify their relationships at both landscape and class levels.The results show that the centrality measures can reflect the hierarchy of road network as they associate with road grade.Further analysis exhibit that as centrality densities increase,the whole landscape becomes more fragmented and regular.At the class level,the forest gradually decreases and becomes fragmented,while the construction land increases and turns to more compact.Therefore,these findings indicate that the ability and potential applications of centrality densities estimated by KDE in quantifying the relationships between roads and landscapes,can provide detailed information and valuable guidance for transportation and land-use planning as well as a new insight into ecological effects of roads.展开更多
In mountain regions such as Lake Sevan basin, landscape-ecological problems are manifested sharply. Lake Sevan basin lies in the east of the RA (Republic of Armenia) and is characterized by unique natural and econom...In mountain regions such as Lake Sevan basin, landscape-ecological problems are manifested sharply. Lake Sevan basin lies in the east of the RA (Republic of Armenia) and is characterized by unique natural and economic peculiarities. It covers an area of 4,891 km^2, or 16% of the entire territory of the country. The article considers the dynamics of the ecosystems of Lake Sevan basin through remote sensing data. To achieve the stated goal, multi-zonal satellite images Landsat ETM (Enhanced Thematic Mapper Plus), Landsat TM (Thematic Mapper) and Landsat MSS (Multispectral Scanner) were applied. All satellite imagery data was geometrically and atmospherically corrected. Temporal changes were determined using both a supervised classification approach and NDVI (normalized difference vegetation index) in that time series. Supervised procedure, a hierarchical land cover classification system was used to detect the different land cover classes in the Lake Sevan basin, Armenia. According to this system, four land cover categories exist in this area: (1) water; (2) vegetation-bare; (3) man-altered land; (4) vegetated land, which indicate that for the last 40 years the study area has displayed expansion of man-made landscapes and vegetation-bare sites, ecosystems having lower biomass and reduction of woodlands. NDVI values and the area they covered indicate that between 1973 and 2011, the area of almost non-vegetated lands increased approximately by three times. The main cause of such changes is activation of erosion processes as a result of a climate warming.展开更多
Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mech...Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mechanical and physical properties such as shear strength, compressibility, shrinkage and swelling potentials. Although, several studies have been conducted regarding the land use effects on various soil mechanical properties, little is known about the effects of land use and slope positions on Atterberg limits and consistency indices. This study was conducted to investigate the effects of land use and slope position on selected soil physical and chemical properties, Atterberg limits and consistency indices in hilly region of western Iran. Three land uses including dryland farming, irrigated farming and pasture and four slope positions(i.e., shoulder, backslope, footslope, and toeslope) were used for soil samplings. One hundred eleven soil samples were collected from the surface soil(0-10 cm). Selected physical and chemical properties, liquid limit(LL), plastic limit(PL) and shrinkage limit(SL) were measured using the standard methods; and consistency indices including plastic index(PI), friability index(FI), shrinkage index(SI) and soil activity(A=PI/clay) were calculated. The results showed that irrigated farming significantly increased organic matter content(OM) and OM/clay ratio, and decreased bulk density(ρb) and relative bulk density(ρb-rel) as a result of higher biomass production and plant residues added to the soil compared to other land uses. Except for sand content, OM, ρb, cation exchange capacity(CEC) and calcium carbonate equivalent(CCE), slope position significantly affected soil physical and chemical properties. The highest values of silt, OM/clay and CEC/clay were found in the toeslope position, predominantly induced by soil redistribution within the landscape. The use of complexed(COC)- noncomplexed organic carbon(NCOC) concept indicated that majority of the studied soils were located below the saturation line and the OM in the soils was mainly in the COC form. The LL, PI, FI and A showed significant differences among the land uses; the highest values belonged to the irrigated farming due to high biomass production and plant residues returned to the soils. Furthermore, slope position significantly affected the Atterberg limits and consistency indices except for SL. The highest values of LL, PI, SI and A were observed in the toeslope position probably because of higher OM and CEC/clay due to greater amount of expandable phyllosilicate clays. Overall, soils on the toeslope under irrigated farming with high LL and SI and low values of FI need careful tillage management to avoid soil compaction.展开更多
Soil salinization is one of the most common land degradation processes. In this study, spectral measurements of saline soil samples collected from the Yellow River Delta region of China were conducted in laboratory an...Soil salinization is one of the most common land degradation processes. In this study, spectral measurements of saline soil samples collected from the Yellow River Delta region of China were conducted in laboratory and hyperspectral data were acquired from an EO-1 Hyperion sensor to quantitatively map soil salinity in the region. A soil salinity spectral index (SSI) was constructed from continuum-removed reflectance (CR-reflectance) at 2052 and 2203 nm, to analyze the spectral absorption features of the salt-affected soils. There existed a strong correlation (r = 0.91) between the SSI and soil salt content (SSC). Then, a model for estimation of SSC with SSI was established using univariate regression and validation of the model yielded a root mean square error (RMSE) of 0.986 and an R2 of 0.873. The model was applied to a Hyperion reflectance image on a pixel-by-pixel basis and the resulting quantitative salinity map was validated successfully with RMSE = 1.921 and R2 = 0.627. These suggested that the satellite hyperspectral data had the potential for predicting SSC in a large area.展开更多
Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing e...Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation.展开更多
基金Supported Land Degradation Management and Policy Support Program,Control Partnership of Land Degradation of Drought Ecosystem of China-Global Environment Foundation~~
文摘The research established land degradation monitoring and assessment in- dex system of farmland ecosystem under influence of human activities, including farming system, measures, mulch residuals, fertilizer pollutions, pesticide pollution, irrigation method, salt content of soils, engineering measures of discharging alkali, agricultural protection forests and poverty. The indices of the system are accessible, and convenient for operation, which is suitable for land managers self-monitoring, re- ducing irrational farming activities, improving farmland productivity and preventing farmland degradation.
基金Supported by the Study on the Farmland Quality Evolution and Protection Mechanism based on Rapid Urbanization~~
文摘According to the natural ecology and socio-economic conditions in Henan Province, a land use regionalization index system with 6 factors and 24 factor layers was constructed by combining with the characteristics of land use in Henan Province. Expert scoring method was used to determine the weights of the indicators. Based on the similarities and differences of these factors in the index system at county (city, district) levels, hierarchical clustering method was used to make the quantitative analysis to the land use regionalization in Henan Province. And constrastive analysis and qualitative analysis were made to the regionalization scheme by combining with the acutal conditions in the counties (cities, districts), and finally, Henan Province was classified into 6 regions.
基金Supported by the Mutual Fund Project for Soft Science Research of Guizhou Science and Technology Department and Guizhou University of Finance and Economics(Qiankehe LH[2013]7249)~~
文摘Based on the theory of information entropy, time series and spatial variation of land use changes of Bijie City in 2009-2013 were analyzed from different dimensions such as land use degree and land use diversity. The result showed that in 2009-2013, the forest vegetation was well protected, and the construction land was under reasonable expansion under the influence of economic development, the land use degree of which developed gradually to width and depth, and the trend of information entropy showed a graduate increase, indicating that land use scale became more reasonable and the area of different land type became more balanced in Bijie in the period. The study results showed that land resources in Bijie City were used rationally under the strategy from central government local government,and Bijie was in the benign development of economic development—resource distribution—scale change. Moreover, Bijie chould further improve land use pattern such as redevelop stock construction land, optimize the industrial land use pattern and mountain agricultural land development in the future.
基金supported by the National Natural Science Foundation of China(41205126 and 41475085)Anhui Provincial Natural Science Foundation(1408085MKL60 and1508085MD64)Meteorological Research Fund of Anhui Meteorological Bureau(KM201520)
文摘In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. Satellite-based land use/land cover(LULC), land surface temperature(LST), normalized difference vegetation index(NDVI) are used to investigate the effects. The study shows that LULC around meteorological stations changed significantly due to urban expansion. Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations. Moreover, the normalized LST and NDVI exhibit strong inverse correlations around meteorological stations, so the variability of LST can be monitored through evaluating the variability of NDVI. In addition, station-relocation plays an important role in improving representativeness of thermal environment. Notably, the environment representativeness was improved, but when using the data from the station to study climate change, the relocation-induced inhomogeneous data should be considered and adjusted. Consequently,controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation. The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.
文摘Eleven soil types, which can be identified and delineated using conventional soil survey procedures, were characterized for loblolly pine (Pinus taeda L.) productivity. Four 4-hectare study sites, each containing four measurement plots, were established for every soil type studied. In a stepwise multiple regression, both soil parent material (i.e. a combination of subsoil texture and geology) (p〈0.001), and drainage class (p=0.006) were significant predictors of site index (tree age 25), and the overall linear regression model had an R2 value of 0.55. The extremes of soil parent material differed by 3.9 m site index (loamy subsoil on the Wicomico-Penholoway surfaces versus clayey subsoil on the Pamlico-Princess Anne surfaces). Each increment of drainage class differed by 0.7 m site index. For example, a poorly drained soil had 0.7 m lower site index than a somewhat poorly drained soil. For seven of the eleven soil types studied, there is greater than 80% probability that estimated mean site index is within ±0.8 m of the actual soil type mean site index. The other four soil types (labeled G, I, C and K) need to be either redefined or sampled more intensively. Two of these need to be subdivided in order to adequately characterize site quality, one based on geology (Soil type G) and one based on soil drainage class (Soil type I). Variation in soil drainage class and varying amounts of topsoil displaced into windrows were both factors influencing site quality variation of a third soil type (Soil type C). The wide variation in site index data for a fourth soil type (Soil type K) appeared to be due, in part, to sampling study locations and individual measurement plots with less than optimum bedding and/or artificial drainage. Soil parent material (subsoil texture and geology) along with drainage class were found to be important factors influencing site quality on the South Carolina Lower Coastal Plain.
基金Gorgan University of Agricultural Sciences and Natural Resources for the support of this study
文摘Geochemical, mineralogical, and micromorphologieal characteristics of soils and their relevant parent rocks including loess, ignimbrite, sandstone and limestone were investigated to identify the soil-parent material uniformity and the weathering degree of soils in Golestan Province, northern Iran. Highly developed Caleixerolls and moderately developed Haploxerepts were formed on loess and limestone, respectively. In contrast, the soils formed on ignimbrite and sandstone were non- developed Entisols. Illite was the dominant clay mineral found in ignimbrite and sandstone in both the A horizon and parent material. In loess derived soils however, smectite was dominant especially in the Bt horizon compared to its parent material indicating partly to its pedogenic formation. In limestone, illite and vermiculite were dominant both in the A and C horizons. Ti/Zr ratio proved that the studied soils were closely related to their underlying parent materials geochemically. Chemical index of alteration (CIA), micromorphological index of soil development (MISECA), smectite/illite+chlorite ratio and magnetic susceptibility were applied to investigate the degree of soil development. Results showed that the most and the least developed soils were those formed on loess deposits and limestone,respectively. Application of the different geochemical and pedogenetic approaches was proved to be useful in identifying the relevance of soils to their underlying parent materials and also their degree of development.
基金Under the auspices of National Key Technology Research and Development Program of China(No.2012BAH28B02)
文摘Road network is a corridor system that interacts with surrounding landscapes,and understanding their interaction helps to develop an optimal plan for sustainable transportation and land use.This study investigates the relationships between road centrality and landscape patterns in the Wuhan Metropolitan Area,China.The densities of centrality measures,including closeness,betweenness,and straightness,are calculated by kernel density estimation(KDE).The landscape patterns are characterized by four landscape metrics,including percentage of landscape(PLAND),Shannon′s diversity index(SHDI),mean patch size(MPS),and mean shape index(MSI).Spearman rank correlation analysis is then used to quantify their relationships at both landscape and class levels.The results show that the centrality measures can reflect the hierarchy of road network as they associate with road grade.Further analysis exhibit that as centrality densities increase,the whole landscape becomes more fragmented and regular.At the class level,the forest gradually decreases and becomes fragmented,while the construction land increases and turns to more compact.Therefore,these findings indicate that the ability and potential applications of centrality densities estimated by KDE in quantifying the relationships between roads and landscapes,can provide detailed information and valuable guidance for transportation and land-use planning as well as a new insight into ecological effects of roads.
文摘In mountain regions such as Lake Sevan basin, landscape-ecological problems are manifested sharply. Lake Sevan basin lies in the east of the RA (Republic of Armenia) and is characterized by unique natural and economic peculiarities. It covers an area of 4,891 km^2, or 16% of the entire territory of the country. The article considers the dynamics of the ecosystems of Lake Sevan basin through remote sensing data. To achieve the stated goal, multi-zonal satellite images Landsat ETM (Enhanced Thematic Mapper Plus), Landsat TM (Thematic Mapper) and Landsat MSS (Multispectral Scanner) were applied. All satellite imagery data was geometrically and atmospherically corrected. Temporal changes were determined using both a supervised classification approach and NDVI (normalized difference vegetation index) in that time series. Supervised procedure, a hierarchical land cover classification system was used to detect the different land cover classes in the Lake Sevan basin, Armenia. According to this system, four land cover categories exist in this area: (1) water; (2) vegetation-bare; (3) man-altered land; (4) vegetated land, which indicate that for the last 40 years the study area has displayed expansion of man-made landscapes and vegetation-bare sites, ecosystems having lower biomass and reduction of woodlands. NDVI values and the area they covered indicate that between 1973 and 2011, the area of almost non-vegetated lands increased approximately by three times. The main cause of such changes is activation of erosion processes as a result of a climate warming.
基金Isfahan University of Technology for the financial support of this study
文摘Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mechanical and physical properties such as shear strength, compressibility, shrinkage and swelling potentials. Although, several studies have been conducted regarding the land use effects on various soil mechanical properties, little is known about the effects of land use and slope positions on Atterberg limits and consistency indices. This study was conducted to investigate the effects of land use and slope position on selected soil physical and chemical properties, Atterberg limits and consistency indices in hilly region of western Iran. Three land uses including dryland farming, irrigated farming and pasture and four slope positions(i.e., shoulder, backslope, footslope, and toeslope) were used for soil samplings. One hundred eleven soil samples were collected from the surface soil(0-10 cm). Selected physical and chemical properties, liquid limit(LL), plastic limit(PL) and shrinkage limit(SL) were measured using the standard methods; and consistency indices including plastic index(PI), friability index(FI), shrinkage index(SI) and soil activity(A=PI/clay) were calculated. The results showed that irrigated farming significantly increased organic matter content(OM) and OM/clay ratio, and decreased bulk density(ρb) and relative bulk density(ρb-rel) as a result of higher biomass production and plant residues added to the soil compared to other land uses. Except for sand content, OM, ρb, cation exchange capacity(CEC) and calcium carbonate equivalent(CCE), slope position significantly affected soil physical and chemical properties. The highest values of silt, OM/clay and CEC/clay were found in the toeslope position, predominantly induced by soil redistribution within the landscape. The use of complexed(COC)- noncomplexed organic carbon(NCOC) concept indicated that majority of the studied soils were located below the saturation line and the OM in the soils was mainly in the COC form. The LL, PI, FI and A showed significant differences among the land uses; the highest values belonged to the irrigated farming due to high biomass production and plant residues returned to the soils. Furthermore, slope position significantly affected the Atterberg limits and consistency indices except for SL. The highest values of LL, PI, SI and A were observed in the toeslope position probably because of higher OM and CEC/clay due to greater amount of expandable phyllosilicate clays. Overall, soils on the toeslope under irrigated farming with high LL and SI and low values of FI need careful tillage management to avoid soil compaction.
基金Supported by the Open Foundation of State Key Laboratory of Remote Sensing Science,the Institute of Remote Sensing Applications of the Chinese Academy of Sciences and Beijing Normal University (No.2009KFJJ002)the National Natural Science Foundation of China (No.30590370)
文摘Soil salinization is one of the most common land degradation processes. In this study, spectral measurements of saline soil samples collected from the Yellow River Delta region of China were conducted in laboratory and hyperspectral data were acquired from an EO-1 Hyperion sensor to quantitatively map soil salinity in the region. A soil salinity spectral index (SSI) was constructed from continuum-removed reflectance (CR-reflectance) at 2052 and 2203 nm, to analyze the spectral absorption features of the salt-affected soils. There existed a strong correlation (r = 0.91) between the SSI and soil salt content (SSC). Then, a model for estimation of SSC with SSI was established using univariate regression and validation of the model yielded a root mean square error (RMSE) of 0.986 and an R2 of 0.873. The model was applied to a Hyperion reflectance image on a pixel-by-pixel basis and the resulting quantitative salinity map was validated successfully with RMSE = 1.921 and R2 = 0.627. These suggested that the satellite hyperspectral data had the potential for predicting SSC in a large area.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060700)Postdoctoral Science Foundation of China(No.2013M530716)
文摘Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation.