期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
指数函数多项式的实根分离算法 被引量:1
1
作者 葛昕钰 陈世平 刘忠 《计算机应用》 CSCD 北大核心 2022年第5期1531-1537,共7页
针对超越函数多项式的实根分离问题,提出了一种指数函数多项式的区间分离算法exRoot,将非多项式型实函数的实根分离问题转化为多项式正负性判定问题进而对其求解。首先,利用泰勒替换法构造目标函数的多项式区间套;然后,将指数函数的求... 针对超越函数多项式的实根分离问题,提出了一种指数函数多项式的区间分离算法exRoot,将非多项式型实函数的实根分离问题转化为多项式正负性判定问题进而对其求解。首先,利用泰勒替换法构造目标函数的多项式区间套;然后,将指数函数的求根问题转化为多项式在区间内正负性的判定问题;最后,给出综合算法,并且试探性地应用于实特征值线性系统的可达性判定问题。所提算法在Maple中实现,输出的结果可读,且高效易行。区别于HSOLVER和数值计算方法fsolve,exRoot回避了直接讨论根的存在性问题,理论上具有终止性和完备性,且可达到任意精度,应用于最优化问题时可避免数值解带来的系统误差。 展开更多
关键词 指数函数多项式 实根分离 泰勒替换法 区间列 终止性
下载PDF
一种收入分配洛伦兹曲线拟合的线性模型研究 被引量:3
2
作者 李训明 刚宪约 +1 位作者 于广鹏 王飞 《数学的实践与认识》 CSCD 北大核心 2014年第21期44-51,共8页
洛伦兹曲线是用来描述社会收入分配状况的一种曲线,能够精确有效地拟合洛伦兹曲线是进行收入分配定量分析的基础.基于洛伦兹曲线的经济学规律和数学特点,提出了一种新的指数函数多项式拟合洛伦兹曲线的线性模型,并讨论研究模型的矩阵广... 洛伦兹曲线是用来描述社会收入分配状况的一种曲线,能够精确有效地拟合洛伦兹曲线是进行收入分配定量分析的基础.基于洛伦兹曲线的经济学规律和数学特点,提出了一种新的指数函数多项式拟合洛伦兹曲线的线性模型,并讨论研究模型的矩阵广义逆和线性最小二乘求解方法.通过与5个典型的非线性拟合模型的实例对比分析,验证了方法具有收敛稳定、精度高、对噪声不敏感的优点. 展开更多
关键词 洛伦兹曲线 指数函数多项式 线性模型 线性最小二乘
原文传递
On Completeness and Minimality of Random Exponential System in a Weighted Banach Space of Functions Continuous on the Real Line 被引量:3
3
作者 Zhiqiang GAO Guantie DENG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2006年第3期303-310,共8页
In this paper, the completeness and minimality properties of some random exponential system in a weighted Banach space of complex functions continuous on the real line for convex nonnegative weight are studied. The re... In this paper, the completeness and minimality properties of some random exponential system in a weighted Banach space of complex functions continuous on the real line for convex nonnegative weight are studied. The results may be viewed as a probabilistic version of Malliavin's classical results. 展开更多
关键词 Complete Minimal CLOSURE Random exponential polynomials
原文传递
DETERMINING WHETHER A MULTIVARIATE HYPEREXPONENTIAL FUNCTION IS ALGEBRAIC*
4
作者 Ziming LI Dabin ZHENG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2006年第3期352-364,共13页
Let F=C(x1,x2,…,xe,xe+1,…,xm), where x1, x2,… , xe are differential variables, and xe+1,…,xm are shift variables. We show that a hyperexponential function, which is algebraic over F,is of form g(x1, x2, …,xm... Let F=C(x1,x2,…,xe,xe+1,…,xm), where x1, x2,… , xe are differential variables, and xe+1,…,xm are shift variables. We show that a hyperexponential function, which is algebraic over F,is of form g(x1, x2, …,xm)q(x1,x2,…,xe)^1/lwe+1^xe+1…wm^xm, where g∈ F, q ∈ C(x1,x2,…,xe),t∈Z^+ and we+1,…,wm are roots of unity. Furthermore,we present an algorithm for determining whether a hyperexponential function is algebraic over F. 展开更多
关键词 Algebraic functions hyperexponential functions rational certificates rational normal forms.
原文传递
Analysis of some large-scale nonlinear stochastic dynamic systems with subspace-EPC method
5
作者 ER GuoKang IU VaiPan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第9期1631-1637,共7页
The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-E... The probabilistic solutions to some nonlinear stochastic dynamic (NSD) systems with various polynomial types of nonlinearities in displacements are analyzed with the subspace-exponential polynomial closure (subspace-EPC) method. The space of the state variables of the large-scale nonlinear stochastic dynamic system excited by Gaussian white noises is separated into two subspaces. Both sides of the Fokker-Planck-Kolmogorov (FPK) equation corresponding to the NSD system are then integrated over one of the subspaces. The FPK equation for the joint probability density function of the state variables in the other subspace is formulated. Therefore, the FPK equations in low dimensions are obtained from the original FPK equation in high dimensions and the FPK equations in low dimensions are solvable with the exponential polynomial closure method. Examples about multi-degree-offreedom NSD systems with various polynomial types of nonlinearities in displacements are given to show the effectiveness of the subspace-EPC method in these cases. 展开更多
关键词 nonlinear stochastic dynamic systems large-scale systems probability density function Fokker-Planck-Kolmogorov equation subspace-EPC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部