DS(Dempster-Shafer)证据理论具有结合多源数据的能力,在遥感分类中应用越来越广泛。然而,并不是所有数据源利用证据理论结合后都能提高目标类别的基本概率分配(Basic Probability Assignment,BPA),从而提高遥感分类效果。如何对证据结...DS(Dempster-Shafer)证据理论具有结合多源数据的能力,在遥感分类中应用越来越广泛。然而,并不是所有数据源利用证据理论结合后都能提高目标类别的基本概率分配(Basic Probability Assignment,BPA),从而提高遥感分类效果。如何对证据结合的效果进行评价已成为应用证据理论的一个关键问题。本文提出了评价证据结合效果的证据结合指数(evidence combine index,eci),选择TM影像的第5、7波段作为验证eci的多源数据,应用eci评价证据结合效果,利用证据理论遥感分类Kappa系数的变化对证据结合指数进行了验证。结果表明,该指数能够反映证据理论结合效果,为定量评价证据理论结合多源数据效果奠定了基础。展开更多
文摘DS(Dempster-Shafer)证据理论具有结合多源数据的能力,在遥感分类中应用越来越广泛。然而,并不是所有数据源利用证据理论结合后都能提高目标类别的基本概率分配(Basic Probability Assignment,BPA),从而提高遥感分类效果。如何对证据结合的效果进行评价已成为应用证据理论的一个关键问题。本文提出了评价证据结合效果的证据结合指数(evidence combine index,eci),选择TM影像的第5、7波段作为验证eci的多源数据,应用eci评价证据结合效果,利用证据理论遥感分类Kappa系数的变化对证据结合指数进行了验证。结果表明,该指数能够反映证据理论结合效果,为定量评价证据理论结合多源数据效果奠定了基础。