vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetatio...vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.展开更多
Objective To establish early detection and diagnosis for bladder cancer.Methods In the current study,a metabolomics strategy was used to profile bladder cancer urine metabolites in mice and to further characterize the...Objective To establish early detection and diagnosis for bladder cancer.Methods In the current study,a metabolomics strategy was used to profile bladder cancer urine metabolites in mice and to further characterize the disease status at different stages.In addition,some chemometrics algorithms were adopted to analyze the metabolites fingerprints,including baseline removal and retention time shift,to overcome variations in the experimental process.After processing,metabolites were qualitatively and quantitatively analyzed in each sample at different stages.Finally,a random forest algorithm was used to discriminate the differences among different groups.Results Four potential biomarkers,including glyceric acid,(R*,R*)-2,3-Dihydroxybutanoic acid,N-(1-oxohexyl)-glycine and D-Turanose,were discovered by exploring the characteristics of different groups.Conclusion These results suggest that combining chemometrics with the metabolites profile is an effective approach to aid in clinical diagnosis.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.41071267)Scientific Research Foundation for Returned Scholars,Ministry of Education of China(Grant No.[2012]940)the Science & Technology Department of Fujian Province,China(Grant Nos.2012I0005,2012J01167)
文摘vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.
基金funding support from the Natural Science Foundation of China (No. 81673585 and No. 81603400)Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine Open Fund (No. 2015ZYZD13 and No. 2015ZYZD10)+2 种基金Key research and development project of Hunan Province Science and Technology (No. 2016SK2048)Innovative Project for Post-graduate of Hunan University of Chinese Medicine (No. 2017CX05)the National Standard Project of Chinese Medicine (No. ZYBZH-Y-HUN-21)
文摘Objective To establish early detection and diagnosis for bladder cancer.Methods In the current study,a metabolomics strategy was used to profile bladder cancer urine metabolites in mice and to further characterize the disease status at different stages.In addition,some chemometrics algorithms were adopted to analyze the metabolites fingerprints,including baseline removal and retention time shift,to overcome variations in the experimental process.After processing,metabolites were qualitatively and quantitatively analyzed in each sample at different stages.Finally,a random forest algorithm was used to discriminate the differences among different groups.Results Four potential biomarkers,including glyceric acid,(R*,R*)-2,3-Dihydroxybutanoic acid,N-(1-oxohexyl)-glycine and D-Turanose,were discovered by exploring the characteristics of different groups.Conclusion These results suggest that combining chemometrics with the metabolites profile is an effective approach to aid in clinical diagnosis.