修正线性单元(rectified linear unit,ReLU)是深度卷积神经网络常用的激活函数,但当输入为负数时,ReLU的输出为零,造成了零梯度问题;且当输入为正数时,ReLU的输出保持输入不变,使得ReLU函数的平均值恒大于零,引起了偏移现象,从而限制了...修正线性单元(rectified linear unit,ReLU)是深度卷积神经网络常用的激活函数,但当输入为负数时,ReLU的输出为零,造成了零梯度问题;且当输入为正数时,ReLU的输出保持输入不变,使得ReLU函数的平均值恒大于零,引起了偏移现象,从而限制了深度卷积神经网络的学习速率和学习效果.针对ReLU函数的零梯度问题和偏移现象,根据"输出均值接近零的激活函数能够提升神经网络学习性能"原理对其进行改进,提出SLU(softplus linear unit)函数.首先,对负数输入部分进行softplus处理,使得负数输入时SLU函数的输出为负,从而输出平均值更接近于零,减缓了偏移现象;其次,为保证梯度平稳,对SLU的参数进行约束,并固定正数部分的参数;最后,根据SLU对正数部分的处理调整负数部分的参数,确保激活函数在零点处连续可导,信息得以双向传播.设计深度自编码模型在数据集MINST上进行无监督学习,设计网中网卷积神经网络模型在数据集CIFAR-10上进行监督学习.实验结果表明,与ReLU及其相关改进单元相比,基于SLU函数的神经网络模型具有更好的特征学习能力和更高的学习精度.展开更多
光刻热点检测是实现集成电路可制造性设计,保障集成电路芯片最终良率的关键。鉴于传统基于深度学习的光刻热点检测方法难以满足先进集成电路制造对检测精度的要求,提出了一种基于改进Yolov5s的检测算法,用于光刻版图热点缺陷的精确检测...光刻热点检测是实现集成电路可制造性设计,保障集成电路芯片最终良率的关键。鉴于传统基于深度学习的光刻热点检测方法难以满足先进集成电路制造对检测精度的要求,提出了一种基于改进Yolov5s的检测算法,用于光刻版图热点缺陷的精确检测。通过将坐标注意力机制引入骨干网络,提高了Yolov5s模型对版图图形区域的关注度,进而极大地改善了基于Yolov5s的检测算法的光刻热点检测性能。与此同时,采用Sigmoid线性单元激活函数进一步完善整个神经网络的非线性表达,利用Scylla交并比损失函数更快速地定量评估边界框回归损失,提高了热点检测算法的收敛速度和精度。将ICCAD(The International Conference on Computer-Aided Design)2012竞赛基准、经光学邻近校正优化后的光刻图形作为数据集对所提算法开展性能测试实验,验证了热点检测算法的优异检测精度。实验结果表明,该算法的平均准确率、平均召回率、平均F1-score和均值平均精度分别达到97.7%、98.0%、97.8%和98.4%,显著优于其他光刻热点检测算法,展示了良好的应用前景。展开更多
文摘修正线性单元(rectified linear unit,ReLU)是深度卷积神经网络常用的激活函数,但当输入为负数时,ReLU的输出为零,造成了零梯度问题;且当输入为正数时,ReLU的输出保持输入不变,使得ReLU函数的平均值恒大于零,引起了偏移现象,从而限制了深度卷积神经网络的学习速率和学习效果.针对ReLU函数的零梯度问题和偏移现象,根据"输出均值接近零的激活函数能够提升神经网络学习性能"原理对其进行改进,提出SLU(softplus linear unit)函数.首先,对负数输入部分进行softplus处理,使得负数输入时SLU函数的输出为负,从而输出平均值更接近于零,减缓了偏移现象;其次,为保证梯度平稳,对SLU的参数进行约束,并固定正数部分的参数;最后,根据SLU对正数部分的处理调整负数部分的参数,确保激活函数在零点处连续可导,信息得以双向传播.设计深度自编码模型在数据集MINST上进行无监督学习,设计网中网卷积神经网络模型在数据集CIFAR-10上进行监督学习.实验结果表明,与ReLU及其相关改进单元相比,基于SLU函数的神经网络模型具有更好的特征学习能力和更高的学习精度.
文摘光刻热点检测是实现集成电路可制造性设计,保障集成电路芯片最终良率的关键。鉴于传统基于深度学习的光刻热点检测方法难以满足先进集成电路制造对检测精度的要求,提出了一种基于改进Yolov5s的检测算法,用于光刻版图热点缺陷的精确检测。通过将坐标注意力机制引入骨干网络,提高了Yolov5s模型对版图图形区域的关注度,进而极大地改善了基于Yolov5s的检测算法的光刻热点检测性能。与此同时,采用Sigmoid线性单元激活函数进一步完善整个神经网络的非线性表达,利用Scylla交并比损失函数更快速地定量评估边界框回归损失,提高了热点检测算法的收敛速度和精度。将ICCAD(The International Conference on Computer-Aided Design)2012竞赛基准、经光学邻近校正优化后的光刻图形作为数据集对所提算法开展性能测试实验,验证了热点检测算法的优异检测精度。实验结果表明,该算法的平均准确率、平均召回率、平均F1-score和均值平均精度分别达到97.7%、98.0%、97.8%和98.4%,显著优于其他光刻热点检测算法,展示了良好的应用前景。