[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with soundi...[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.展开更多
The authors discuss a discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times.As soon as the orbit is empty,the server takes a vacation.However,the server is allowed to take a maximum numb...The authors discuss a discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times.As soon as the orbit is empty,the server takes a vacation.However,the server is allowed to take a maximum number J of vacations,if the system remains empty after the end of a vacation.If there is at least one customer in the orbit at the end of a vacation,the server begins to serve the new arrivals or the arriving customers from the orbit.For this model,the authors focus on the steady-state analysis for the considered queueing system.Firstly,the authors obtain the generating functions of the number of customers in the orbit and in the system.Then,the authors obtain the closed-form expressions of some performance measures of the system and also give a stochastic decomposition result for the system size.Besides,the relationship between this discrete-time model and the corresponding continuous-time model is also investigated.Finally,some numerical results are provided.展开更多
基金Supported by Science and Technology Development Project of Shandong Science and Technology Hall(2010GSF10805)National Natural Science Foundation of China(41140036)~~
文摘[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.
基金supported by the National Natural Science Foundation of China under Grant No.71071133
文摘The authors discuss a discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times.As soon as the orbit is empty,the server takes a vacation.However,the server is allowed to take a maximum number J of vacations,if the system remains empty after the end of a vacation.If there is at least one customer in the orbit at the end of a vacation,the server begins to serve the new arrivals or the arriving customers from the orbit.For this model,the authors focus on the steady-state analysis for the considered queueing system.Firstly,the authors obtain the generating functions of the number of customers in the orbit and in the system.Then,the authors obtain the closed-form expressions of some performance measures of the system and also give a stochastic decomposition result for the system size.Besides,the relationship between this discrete-time model and the corresponding continuous-time model is also investigated.Finally,some numerical results are provided.