本文研究广义部分线性单指标模型(generalized partially linear single-index models,GPLSIMs)的模型平均问题.在实际应用中,GPLSIMs由于其灵活性和易解释性受到广泛关注.然而,GPLSIMs在应用中存在两类不确定性:变量的不确定性和单指...本文研究广义部分线性单指标模型(generalized partially linear single-index models,GPLSIMs)的模型平均问题.在实际应用中,GPLSIMs由于其灵活性和易解释性受到广泛关注.然而,GPLSIMs在应用中存在两类不确定性:变量的不确定性和单指标连接函数光滑度的不确定性.为了解决该不确定性问题,本文提出一种GPLSIMs的最优模型平均方法,该方法通过最大交叉验证准则得到数据驱动的权重.在模型误设定假设和发散模型空间的框架下,本文证明在最小化Kullback-Leibler(KL)损失准则下,所提出的模型平均估计渐近最优.同时,当候选模型集中存在伪真模型时,本文证明基于交叉验证准则得到的权重渐近地集中在伪真模型上.此外,基于提出的模型平均方法,本文为GPLSIMs构建了一种变量重要性度量,并证明该度量可以渐近识别所有真实模型中的变量.模拟研究和两个实际数据分析均展示了本文提出的方法相对于几种现有方法的优势.展开更多
部分线性单指标模型是在科学研究中具有广泛应用的经典半参数模型之一.本文主要研究具有自相关误差结构的面板数据的部分线性单指标模型的统计推断问题.通过结合局部多项式和纠偏广义估计方程方法,本文提出模型参数的可行加权广义估计(f...部分线性单指标模型是在科学研究中具有广泛应用的经典半参数模型之一.本文主要研究具有自相关误差结构的面板数据的部分线性单指标模型的统计推断问题.通过结合局部多项式和纠偏广义估计方程方法,本文提出模型参数的可行加权广义估计(feasible weighted generalized estimating equation estimation, GEE-FW),证明该估计具有相合性和渐近正态性,并且在渐近方差意义下阐明该估计比工作独立的广义估计(generalized estimating equation estimation based on working independence,GEE-WI)更加有效.此外,本文对模型中未知连接函数提出两阶段局部线性估计(two step local linear generalized estimating equation estimation, GEE-TS),建立该估计的渐近性质.数值模拟研究和实际数据分析都表明了本文所提出的方法是有效的,在理论和应用方面均具有良好的表现.展开更多
文摘本文研究广义部分线性单指标模型(generalized partially linear single-index models,GPLSIMs)的模型平均问题.在实际应用中,GPLSIMs由于其灵活性和易解释性受到广泛关注.然而,GPLSIMs在应用中存在两类不确定性:变量的不确定性和单指标连接函数光滑度的不确定性.为了解决该不确定性问题,本文提出一种GPLSIMs的最优模型平均方法,该方法通过最大交叉验证准则得到数据驱动的权重.在模型误设定假设和发散模型空间的框架下,本文证明在最小化Kullback-Leibler(KL)损失准则下,所提出的模型平均估计渐近最优.同时,当候选模型集中存在伪真模型时,本文证明基于交叉验证准则得到的权重渐近地集中在伪真模型上.此外,基于提出的模型平均方法,本文为GPLSIMs构建了一种变量重要性度量,并证明该度量可以渐近识别所有真实模型中的变量.模拟研究和两个实际数据分析均展示了本文提出的方法相对于几种现有方法的优势.
文摘部分线性单指标模型是在科学研究中具有广泛应用的经典半参数模型之一.本文主要研究具有自相关误差结构的面板数据的部分线性单指标模型的统计推断问题.通过结合局部多项式和纠偏广义估计方程方法,本文提出模型参数的可行加权广义估计(feasible weighted generalized estimating equation estimation, GEE-FW),证明该估计具有相合性和渐近正态性,并且在渐近方差意义下阐明该估计比工作独立的广义估计(generalized estimating equation estimation based on working independence,GEE-WI)更加有效.此外,本文对模型中未知连接函数提出两阶段局部线性估计(two step local linear generalized estimating equation estimation, GEE-TS),建立该估计的渐近性质.数值模拟研究和实际数据分析都表明了本文所提出的方法是有效的,在理论和应用方面均具有良好的表现.