A number of recent studies have examined trends in extreme temperature indices using a linear regression model based on ordinary least-squares. In this study, quantile regression was, for the first time, applied to ex...A number of recent studies have examined trends in extreme temperature indices using a linear regression model based on ordinary least-squares. In this study, quantile regression was, for the first time, applied to examine the trends not only in the mean but also in all parts of the distribution of several extreme temperature indices in China for the period 1960–2008. For China as a whole, the slopes in almost all the quantiles of the distribution showed a notable increase in the numbers of warm days and warm nights, and a significant decrease in the number of cool nights. These changes became much faster as the quantile increased. However, although the number of cool days exhibited a significant decrease in the mean trend estimated by classical linear regression, there was no obvious trend in the upper and lower quantiles. This finding suggests that examining the trends in different parts of the distribution of the time-series is of great importance. The spatial distribution of the trend in the 90 th quantile indicated that there was a pronounced increase in the numbers of warm days and warm nights, and a decrease in the number of cool nights for most of China, but especially in the northern and western parts of China, while there was no significant change for the number of cool days at almost all the stations.展开更多
This paper develops sequence-based methods for identifying novel protein-protein interactions (PPIs) by means of support vector machines (SVMs). The authors encode proteins ont only in the gene level but also in t...This paper develops sequence-based methods for identifying novel protein-protein interactions (PPIs) by means of support vector machines (SVMs). The authors encode proteins ont only in the gene level but also in the amino acid level, and design a procedure to select negative training set for dealing with the training dataset imbalance problem, i.e., the number of interacting protein pairs is scarce relative to large scale non-interacting protein pairs. The proposed methods are validated on PPIs data of Plasmodium falciparum and Escherichia coli, and yields the predictive accuracy of 93.8% and 95.3%, respectively. The functional annotation analysis and database search indicate that our novel predictions are worthy of future experimental validation. The new methods will be useful supplementary tools for the future proteomics studies.展开更多
基金sponsored by the National Basic Research Program of China (973 Program, Grant No. 2012CB956203)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-EW-202)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05090100)
文摘A number of recent studies have examined trends in extreme temperature indices using a linear regression model based on ordinary least-squares. In this study, quantile regression was, for the first time, applied to examine the trends not only in the mean but also in all parts of the distribution of several extreme temperature indices in China for the period 1960–2008. For China as a whole, the slopes in almost all the quantiles of the distribution showed a notable increase in the numbers of warm days and warm nights, and a significant decrease in the number of cool nights. These changes became much faster as the quantile increased. However, although the number of cool days exhibited a significant decrease in the mean trend estimated by classical linear regression, there was no obvious trend in the upper and lower quantiles. This finding suggests that examining the trends in different parts of the distribution of the time-series is of great importance. The spatial distribution of the trend in the 90 th quantile indicated that there was a pronounced increase in the numbers of warm days and warm nights, and a decrease in the number of cool nights for most of China, but especially in the northern and western parts of China, while there was no significant change for the number of cool days at almost all the stations.
基金This research is supported by the Key Project of the National Natural Science Foundation of China under Grant No. 10631070, the National Natural Science Foundation of China under Grant Nos. 10801112, 10971223, 11071252, and the Ph.D Graduate Start Research Foundation of Xinjiang University Funded Project under Grant No. BS080101. Thank Dr. Yong Wang from Institute of Systems Science, Academy of Mathematics and Systems Science for kind discussion and good suggestions.
文摘This paper develops sequence-based methods for identifying novel protein-protein interactions (PPIs) by means of support vector machines (SVMs). The authors encode proteins ont only in the gene level but also in the amino acid level, and design a procedure to select negative training set for dealing with the training dataset imbalance problem, i.e., the number of interacting protein pairs is scarce relative to large scale non-interacting protein pairs. The proposed methods are validated on PPIs data of Plasmodium falciparum and Escherichia coli, and yields the predictive accuracy of 93.8% and 95.3%, respectively. The functional annotation analysis and database search indicate that our novel predictions are worthy of future experimental validation. The new methods will be useful supplementary tools for the future proteomics studies.