Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling...Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.展开更多
Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to aut...Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.展开更多
基金Work supported by the Lancaster University,UK and Jiangsu Provincial Laboratory of Advanced Robotics,SooChow University,ChinaProject(BK2009509) supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(K5117827) supported by the Scientific Research Foundation for the Returned Scholars,Ministry of Education of ChinaProject(Q3117918) supported by the Scientific Research Foundation for Young Teachers of Soochow University,China
文摘Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.
基金Project(K5117827)supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(08KJB510021)supported by the Natural Science Research Council of Jiangsu Province,China+1 种基金Project(Q3117918)supported by Scientific Research Foundation for Young Teachers of Soochow University,ChinaProject(60910001)supported by National Natural Science Foundation of China
文摘Consider the design and implementation of an electro-hydraulic control system for a robotic excavator, namely the Lancaster University computerized and intelligent excavator (LUCIE). The excavator was developed to autonomously dig trenches without human intervention. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control, which is difficult for traditional control algorithm, e.g. PI/PID. A gain scheduling design, based on the true digital proportional-integral-plus (PIP) control methodology, was utilized to regulate the nonlinear joint dynamics. Simulation and initial field tests both demonstrated the feasibility and robustness of proposed technique to the uncertainties of parameters, time delay and load disturbances, with the excavator arm directed along specified trajectories in a smooth, fast and accurate manner. The tracking error magnitudes for oblique straight line and horizontal straight line are less than 20 mm and 50 mm, respectively, while the velocity reaches 9 m/min.