This paper studies the influence of a stress relaxation zone caused by foundation excavation on the performance of Jinping-I arch dam, using the orthogonal experiment method. Firstly, by adopting the characteristic st...This paper studies the influence of a stress relaxation zone caused by foundation excavation on the performance of Jinping-I arch dam, using the orthogonal experiment method. Firstly, by adopting the characteristic stress of the dam as an index and coupling it with range analysis, the most significant factors and the degree of relaxation influence on the arch dam performance are found. This is then combined with monitoring data from the dam, and the extent of influence on the arch dam performance caused by the relaxation is evaluated through numerical analysis. The results show that the relaxation of foundation excavation has a negative impact on the performance of the arch dam in general, the extent of elastic modulus degradation in the relaxation zone being the main factor affecting stresses in the dam. The relaxation of the rock mass leads to an increase in dam stress in local areas near the relaxation zone, but has little effect on more distant areas.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2007CB714104)the National Natural Science Founda-tion of China (Grant No. 51079045)
文摘This paper studies the influence of a stress relaxation zone caused by foundation excavation on the performance of Jinping-I arch dam, using the orthogonal experiment method. Firstly, by adopting the characteristic stress of the dam as an index and coupling it with range analysis, the most significant factors and the degree of relaxation influence on the arch dam performance are found. This is then combined with monitoring data from the dam, and the extent of influence on the arch dam performance caused by the relaxation is evaluated through numerical analysis. The results show that the relaxation of foundation excavation has a negative impact on the performance of the arch dam in general, the extent of elastic modulus degradation in the relaxation zone being the main factor affecting stresses in the dam. The relaxation of the rock mass leads to an increase in dam stress in local areas near the relaxation zone, but has little effect on more distant areas.