期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于数据挖掘的电力装备企业多价值链协同数据预处理方法研究及应用
1
作者 牛东晓 斯琴卓娅 +2 位作者 王董禹 许晓敏 张焕粉 《中国管理科学》 CSSCI CSCD 北大核心 2023年第11期321-331,共11页
在电力装备制造企业的数字化转型中,需要对数据空间中多价值链协同的高维数据进行挖掘与分析,本文针对电力装备制造业进销存大数据的预处理问题展开了研究。首先,给出了变点法和局部异常因子算法(local outlier factor method,LOF)组合... 在电力装备制造企业的数字化转型中,需要对数据空间中多价值链协同的高维数据进行挖掘与分析,本文针对电力装备制造业进销存大数据的预处理问题展开了研究。首先,给出了变点法和局部异常因子算法(local outlier factor method,LOF)组合的数据异常值检验校正预处理方法;其次,提出了基于LASSO(least absolute shrinkage and selection operator,LASSO)算法的栈式稀疏自编码器(stack sparse auto-encoder,SSAE)数据降噪降维组合机器学习处理方法(SSAE-LASSO),对特征进行压缩降维提取,去除严重干扰数据回归分析的噪声信息,并过滤影响度低的冗余数据,从而实现数据的降噪降维处理。最后,将本文提出的方法应用于不同的算法进行检验,通过对两种预处理的数据对比发现,本文提出的方法有效提高了电力产品销售量智能预测的精度。 展开更多
关键词 电力装备企业 多价值链协同 数据挖掘预处理方法 机器学习
原文传递
改进的Fp-Growth算法在高校教务选课系统中的应用
2
作者 邹永平 《天津职业技术师范大学学报》 2012年第4期51-54,共4页
对数据关联规则挖掘中最为消耗系统资源的步骤——搜寻频繁项集作了深入的描述,在对已有数据关联规则挖掘算法的分析基础上,提出了基于Fp-Growth算法的数据关联规则挖掘改进的Fp-Growth算法,开发了无锡交通高等职业技术学校的教务管理系... 对数据关联规则挖掘中最为消耗系统资源的步骤——搜寻频繁项集作了深入的描述,在对已有数据关联规则挖掘算法的分析基础上,提出了基于Fp-Growth算法的数据关联规则挖掘改进的Fp-Growth算法,开发了无锡交通高等职业技术学校的教务管理系统,并通过实验验证了改进的挖掘算法的有效性和优越性。 展开更多
关键词 数据挖掘 关联规则 挖掘数据预处理 Fp—Growth算法
下载PDF
Using Spatial Data Mining to Predict the Solvability Space of Preconditioned Sparse Linear Systems
3
作者 Shuting Xu SangBaeKim Jun Zhang 《Computer Technology and Application》 2016年第3期139-148,共10页
The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods [1] are considered th... The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods [1] are considered the preferred methods. Selecting an effective preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The purpose of this paper is to predict the parameter solvability space of the preconditioners with two or more parameters. The parameter solvability space is usually irregular, however, in many situations it shows spatial locality, i.e. the parameter locations that are closer in parameter space are more likely to have similar solvability. We propose three spatial data mining methods to predict the solvability of ILUT which make usage of spatial locality in different ways. The three methods are MSC (multi-points SVM classifier), OSC (overall SVM classifier), and OSAC (overall spatial autoregressive classifier). The experimental results show that both MSC and OSAC can obtain 90% accuracy in prediction, but OSAC is much simpler to implement. We focus our work on ILUT preconditioner [2], but the proposed strategies should be applicable to other preconditioners with two or more parameters. 展开更多
关键词 PRECONDITIONER PREDICTION SOLVABILITY SVM spatial autoregressive model.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部