The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.T...The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness.展开更多
Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study th...Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.展开更多
Non-equal channel lateral extrusion(NECLE) is a new process that can be used to attain higher grain refinement in comparison with equal channel lateral extrusion(ECLE). The die design for this process was numerica...Non-equal channel lateral extrusion(NECLE) is a new process that can be used to attain higher grain refinement in comparison with equal channel lateral extrusion(ECLE). The die design for this process was numerically and experimentally studied. After finding a good correlation between the numerical and experimental results, more comprehensive FE analyses were carried out. Different die geometrical parameters were considered and their effects on the induced plastic strain, stress distribution, velocity field and forming load of the process were investigated. It was found that by this process with a suitable set of die geometrical parameters, higher induced effective strain and more homogeneous strain distribution could be achieved in comparison with ECLE operation.展开更多
Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed ...Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed andanalyzed.The3D FEM simulations were carried out to investigate the load-displacement behavior,the plastic deformationcharacteristics and the effective plastic strain homogeneity of Al-1080deformed by different forming processes.The simulationresults were validated by microstructure observations,microhardness distribution maps and the correlation between the effectiveplastic strain and the microhardness values.The3D FEM simulations were performed successfully with a good agreement with theexperimental results.The load-displacement curves and the peak load values of the3D FEM simulations and the experimentalresults were close from each other.The microhardness distribution maps were in a good conformity with the effective plastic straincontours and verifying the3D FEM simulations results.The ECAP workpiece has a higher degree of deformation homogeneity thanthe other deformation processes.The microhardness values were calculated based on the average effective plastic strain.Thepredicted microhardness values fitted the experimental results well.The microstructure observations in the longitudinal andtransverse directions support the3D FEM effective plastic strain and microhardness distributions result in different formingprocesses.展开更多
基金Projects(50774026,50875059)supported by the National Natural Science Foundation of ChinaProject(20070420023)supported by the China Postdoctoral Science FoundationProject(2008AA03A239)supported by the High-tech Research and Development Program of China
文摘The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness.
基金partially supported by the Iran National Science Foundation(INSF) with grant number 92014140
文摘Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.
文摘Non-equal channel lateral extrusion(NECLE) is a new process that can be used to attain higher grain refinement in comparison with equal channel lateral extrusion(ECLE). The die design for this process was numerically and experimentally studied. After finding a good correlation between the numerical and experimental results, more comprehensive FE analyses were carried out. Different die geometrical parameters were considered and their effects on the induced plastic strain, stress distribution, velocity field and forming load of the process were investigated. It was found that by this process with a suitable set of die geometrical parameters, higher induced effective strain and more homogeneous strain distribution could be achieved in comparison with ECLE operation.
文摘Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed andanalyzed.The3D FEM simulations were carried out to investigate the load-displacement behavior,the plastic deformationcharacteristics and the effective plastic strain homogeneity of Al-1080deformed by different forming processes.The simulationresults were validated by microstructure observations,microhardness distribution maps and the correlation between the effectiveplastic strain and the microhardness values.The3D FEM simulations were performed successfully with a good agreement with theexperimental results.The load-displacement curves and the peak load values of the3D FEM simulations and the experimentalresults were close from each other.The microhardness distribution maps were in a good conformity with the effective plastic straincontours and verifying the3D FEM simulations results.The ECAP workpiece has a higher degree of deformation homogeneity thanthe other deformation processes.The microhardness values were calculated based on the average effective plastic strain.Thepredicted microhardness values fitted the experimental results well.The microstructure observations in the longitudinal andtransverse directions support the3D FEM effective plastic strain and microhardness distributions result in different formingprocesses.