The microstructure and mechanical properties of Mg-xSn (x-3, 7 and 14, mass fraction, %) alloys extruded indirectly at 300 ℃ were investigated by means of optical microscopy, scanning electron microscopy and tensil...The microstructure and mechanical properties of Mg-xSn (x-3, 7 and 14, mass fraction, %) alloys extruded indirectly at 300 ℃ were investigated by means of optical microscopy, scanning electron microscopy and tensile test. The grain size of the a-Mg matrix decreases from 220, 160 and 93 μm after the homogenization treatment to 28, 3 and 16 μm in the three alloys after extrusion, respectively. The results show that the grain refinement is most remarkable in the as-extruded Mg-7Sn alloy. At the same time, the amount of the Mg2Sn particles remarkably increases in the Mg-7Sn alloy with very uniform distribution in the a-Mg matrix. In contrast, the Mg2Sn phase inherited from the solidification with a large size is mainly distributed along grain boundary in the Mg-14Sn alloy. The tensile tests at room temperature show that the ultimate tensile strength of the as-extruded Mg-7Sn alloy is the highest, i.e., 255 MPa, increased by 120% as compared with that of as-cast samples.展开更多
The purpose of the present research is to determine the tensile strength and elongation of the A390 alloy processed by ECAP and to reveal the relationship between the microstructure and tensile properties. Optical mic...The purpose of the present research is to determine the tensile strength and elongation of the A390 alloy processed by ECAP and to reveal the relationship between the microstructure and tensile properties. Optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for microstructural analysis of the samples. The results of the mechanical testing showed that the ultimate tensile strength (UTS) increased from 142 MPa for the as-cast sample to 275 MPa for the sample after the third ECAP pass. Increasing the ECAP passes up to 4 led to a remarkable enhancement of elongation compared with the as-cast sample. It was found that the improvement of strength and ductility of A390 alloy with increasing the number of ECAP passes was attributed to the homogenous distribution of particles, reduction of particle size, and elimination of voids especially adjacent to the primary silicon particles. The results of fractography demonstrated that when the number of ECAP passes increased to 4, the uniform round dimples formed and the relatively brittle as-cast sample transformed to a ductile alloy.展开更多
The deformation behaviors of extruded-rolled(ER)AZ31 Mg alloys with different rolling reduction and heat treatment were investigated.The results show that the accumulation of rolling reduction increases the density of...The deformation behaviors of extruded-rolled(ER)AZ31 Mg alloys with different rolling reduction and heat treatment were investigated.The results show that the accumulation of rolling reduction increases the density of twins,and refines the grain structures,which are in accordance with the enhanced strength and degraded plasticity.Tensile strength and plasticity of the alloy depend mainly on rolling reduction,while heat treatment temperature plays a more important role than heat treatment time at the same rolling reduction.With the increase of rolling reduction,the plasticity becomes more sensitive than strength on heat treatment. Recrystallization of extruded-rolled alloys will occur easily with deformation increasing,which is induced by addition of distortion energy.展开更多
Forward extrusion experiments of as-cast AZ31 magnesium alloy were conducted at different temperatures and different extrusion ratios using the as-cast billets with and without homogenizing treatment.The mechanical pr...Forward extrusion experiments of as-cast AZ31 magnesium alloy were conducted at different temperatures and different extrusion ratios using the as-cast billets with and without homogenizing treatment.The mechanical properties of pre-and post-extrusion of the two kinds of billets were investigated.Experimental results show that the mechanical properties of post-extrusion of the two kinds of billets all are obviously improved compared with those of pre-extrusion.The elongation of post-extrusion using the billet with homogenizing is higher than that without homogenizing,but the tensile strength is lower than that without homogenizing.When the extrusion ratio increases,the elongation and tensile strength of post-extrusion of two kinds of billets all will increase obviously.When the extrusion temperature of billet without homogenizing increases,the tensile strength of post-extrusion will decrease obviously and the elongation of post-extrusion will change to a small extent.For the billet with homogenizing,the tensile strength of post-extrusion will decrease in some sort when extrusion temperature increases.展开更多
High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperat...High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperatures ranging from 300℃ to 450℃.Strain-rate-change tests were conducted under varying strain rate from 5×10-5s-1to 2×10-2s-1and constant temperature from 300℃ to 450℃.Experimental results show that the maximum elongation of the AZ31 alloy with an average grain size of about 19μm is 117%at strain rate of 10- 3s-1 and temperature of 450℃.Stress exponent and activation energy were characterized to clarify the deformation mechanisms.The enhanced ductility is dominated by solute drag dislocation creep,and the major failure mechanism is cavity growth and interlinkage.展开更多
The microstructure and tensile properties of the Mg-1.0%Sn-xY(x=1.5%,3.0%,3.5%,atom fraction)alloys extruded indirectly at 350℃ were investigated by means of optical microscopy,scanning electron microscopy and tensil...The microstructure and tensile properties of the Mg-1.0%Sn-xY(x=1.5%,3.0%,3.5%,atom fraction)alloys extruded indirectly at 350℃ were investigated by means of optical microscopy,scanning electron microscopy and tensile test.The mean grain sizes ofα-Mg matrix in the three extruded alloys are 6,8 and 12μm,respectively,slightly increasing with the addition of Y. The relationship between microstructure and strength was discussed in detail.The results show that the addition of Y has little effect on the grain refinement of the as-extruded Mg-Sn based alloys above.The only MgSnY phase is detected in the Mg-Sn-1.5%Y alloy, and the Sn3Y5 phase in the Mg-Sn-3.5%Y alloy,whereas both of them simultaneously exist in the Mg-Sn-3.0%Y alloy.The particle shape of MgSnY and Sn3Y5 phase,inherited from the solidification,has little change before and after hot extrusion.Mg-Sn-3.0%Y alloy has the highest ultimate tensile strength(UTS),305 MPa,by over 50%compared with that of the other two alloys.展开更多
Ultrafine grain pure aluminum was produced by equal channel angular pressing and cold rolling, the deformed aluminum was annealed at 200 ℃ for 1 h. The tensile curves of deformed and annealed aluminum show that yield...Ultrafine grain pure aluminum was produced by equal channel angular pressing and cold rolling, the deformed aluminum was annealed at 200 ℃ for 1 h. The tensile curves of deformed and annealed aluminum show that yield strength of deformed aluminum increases by 100%-300% and its elongation decreases by about 20%. After low temperature annealing, strength of annealed aluminum increases by 20% and elongation decreases by over 50%, the recovery of dislocations may be the main cause of annealing strengthening. In addition, there is an abrupt stress drop in the tensile curves of annealed aluminum and the formation of shear band is responsible for it.展开更多
Both Mg-1Mn-3.5Y and Mg-1Mn-1Y-2.5Nd alloys(mass fraction,%)were extruded at 380?C.Most of the(10^-10) crystal planes in the Mg-1Mn-3.5Y alloy are parallel to the normal direction,while most of the(10^-11)cryst...Both Mg-1Mn-3.5Y and Mg-1Mn-1Y-2.5Nd alloys(mass fraction,%)were extruded at 380?C.Most of the(10^-10) crystal planes in the Mg-1Mn-3.5Y alloy are parallel to the normal direction,while most of the(10^-11)crystal planes in the Mg-1Mn-1Y-2.5Nd alloy are parallel to the normal direction.The tensile tests at room temperature,100℃ and 200℃ show that the Mg-1Mn-3.5Y alloy exhibits higher yield strength,but lower elongation to failure as compared with the Mg-1Mn-1Y-2.5Nd alloy. These differences in the tensile mechanical properties between the two alloys are mainly attributed to their different texture types and amount and distribution of the Mg24Y5 precipitates.The serration flow behavior is observed in the Mg-1Mn-1Y-2.5Nd alloy at 200℃,but does not occur in the Mg-1Mn-3.5Y alloy.The Mg-1Mn-3.5Y alloy shows the cleavage fracture mode,while the Mg-1Mn-1Y-2.5Nd alloy exhibits the dimple fracture mode.展开更多
The microstructure,mechanical properties and damping capacity of ZK60-xY(x=0,1.5%,2.5%,4.0%,mass fraction) magnesium alloys were investigated by using the optical microscope(OM),X-ray diffractometer(XRD),universal ten...The microstructure,mechanical properties and damping capacity of ZK60-xY(x=0,1.5%,2.5%,4.0%,mass fraction) magnesium alloys were investigated by using the optical microscope(OM),X-ray diffractometer(XRD),universal tensile testing machine and dynamic mechanical analyzer(DMA).The mechanisms for damping capacity of referred alloys were discussed by Granato-Lücke theory.The results show that Y additions remarkably reduce grain size(the average grain size is 21.6,13.0,8.6 and 4.0μm,respectively),and the tensile properties are enhanced with grain refining(the yield tensile strength increases to 292 MPa from 210 MPa and ultimate tensile strength increases to 330 MPa from 315 MPa).For the ZK60-xY(x=0,1.5%,4.0%)alloys,the damping capacity decreases with the increase of Y content.However,for the ZK60-xY(x=2.5%)alloy,the damping capacity improves abnormally,which is possibly related to the formation of Mg3Y2Zn3(W)FCC phase in this alloy.展开更多
The effect of intermetallic compound (IMC) thickness on the thermal and mechanical properties of Al/Cu honeycomb rods was investigated. The Al/Cu honeycomb rods were fabricated using repeated hydrostatic extrusions ...The effect of intermetallic compound (IMC) thickness on the thermal and mechanical properties of Al/Cu honeycomb rods was investigated. The Al/Cu honeycomb rods were fabricated using repeated hydrostatic extrusions at 200 ℃. During the process, an IMC layer with 1μm in thickness was generated at the Al/Cu interface. Different IMC thicknesses were obtained by post-heat treatment at 420 ℃ for 0.5 to 2 h. The IMC thickness increased to 10.1μm. The IMC layers were identified as Al2Cu (θ), AlCu (η2), and Al4Cu9(γ1) phases. The thermal conductivities in the longitudinal direction and cross direction decreased by 11.9% ((268±4.8) to (236±4.4) W/(m·K)) and 10.4% ((210±3.2) to (188±2.8) W/(m·K)), respectively, with increasing IMC thickness. The ultimate tensile strength and elongation of the Al/Cu honeycomb rod are (103±8.4) MPa and (73±6.2)%, respectively. The ultimate tensile strength increased to (131±6.5) MPa until the IMC thickness reached 7.7μm. It subsequently decreased to (124±3.9) MPa until the IMC thickness reached 10.1μm. The elongation of the Al/Cu honeycomb rod then sharply decreased to (29±2.5)% with increasing IMC thickness.展开更多
基金Project(2008S089)supported by the Key Laboratory Program of Liaoning Province,ChinaProject(2007010303025)supported by the Shenyang Talents Supporting,ChinaProject(50731002)supported by the National Natural Science Foundation of China
文摘The microstructure and mechanical properties of Mg-xSn (x-3, 7 and 14, mass fraction, %) alloys extruded indirectly at 300 ℃ were investigated by means of optical microscopy, scanning electron microscopy and tensile test. The grain size of the a-Mg matrix decreases from 220, 160 and 93 μm after the homogenization treatment to 28, 3 and 16 μm in the three alloys after extrusion, respectively. The results show that the grain refinement is most remarkable in the as-extruded Mg-7Sn alloy. At the same time, the amount of the Mg2Sn particles remarkably increases in the Mg-7Sn alloy with very uniform distribution in the a-Mg matrix. In contrast, the Mg2Sn phase inherited from the solidification with a large size is mainly distributed along grain boundary in the Mg-14Sn alloy. The tensile tests at room temperature show that the ultimate tensile strength of the as-extruded Mg-7Sn alloy is the highest, i.e., 255 MPa, increased by 120% as compared with that of as-cast samples.
基金funding support of Babol Noshirvani University of Technology through Grant program No. BNUT/370725/98, BNUT/370388/98, and BNUT/393044/98
文摘The purpose of the present research is to determine the tensile strength and elongation of the A390 alloy processed by ECAP and to reveal the relationship between the microstructure and tensile properties. Optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for microstructural analysis of the samples. The results of the mechanical testing showed that the ultimate tensile strength (UTS) increased from 142 MPa for the as-cast sample to 275 MPa for the sample after the third ECAP pass. Increasing the ECAP passes up to 4 led to a remarkable enhancement of elongation compared with the as-cast sample. It was found that the improvement of strength and ductility of A390 alloy with increasing the number of ECAP passes was attributed to the homogenous distribution of particles, reduction of particle size, and elimination of voids especially adjacent to the primary silicon particles. The results of fractography demonstrated that when the number of ECAP passes increased to 4, the uniform round dimples formed and the relatively brittle as-cast sample transformed to a ductile alloy.
基金Project(50431020)supported by the National Natural Science Foundation of ChinaProject(2007CB613704)supported by the National Basic Research Program of China
文摘The deformation behaviors of extruded-rolled(ER)AZ31 Mg alloys with different rolling reduction and heat treatment were investigated.The results show that the accumulation of rolling reduction increases the density of twins,and refines the grain structures,which are in accordance with the enhanced strength and degraded plasticity.Tensile strength and plasticity of the alloy depend mainly on rolling reduction,while heat treatment temperature plays a more important role than heat treatment time at the same rolling reduction.With the increase of rolling reduction,the plasticity becomes more sensitive than strength on heat treatment. Recrystallization of extruded-rolled alloys will occur easily with deformation increasing,which is induced by addition of distortion energy.
基金Projects(50605059,50735005)supported by the National Natural Science Foundation of ChinaProject(2009081012)supported by International Cooperation of Shanxi Province,ChinaProject(20090319ZX)supported by Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province,China
文摘Forward extrusion experiments of as-cast AZ31 magnesium alloy were conducted at different temperatures and different extrusion ratios using the as-cast billets with and without homogenizing treatment.The mechanical properties of pre-and post-extrusion of the two kinds of billets were investigated.Experimental results show that the mechanical properties of post-extrusion of the two kinds of billets all are obviously improved compared with those of pre-extrusion.The elongation of post-extrusion using the billet with homogenizing is higher than that without homogenizing,but the tensile strength is lower than that without homogenizing.When the extrusion ratio increases,the elongation and tensile strength of post-extrusion of two kinds of billets all will increase obviously.When the extrusion temperature of billet without homogenizing increases,the tensile strength of post-extrusion will decrease obviously and the elongation of post-extrusion will change to a small extent.For the billet with homogenizing,the tensile strength of post-extrusion will decrease in some sort when extrusion temperature increases.
基金Project(50801034)supported by the National Natural Science Foundation of ChinaProject(20060425)supported by the Scientific and Technological Research Key Lab Foundation of Liaoning Education Department,China
文摘High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperatures ranging from 300℃ to 450℃.Strain-rate-change tests were conducted under varying strain rate from 5×10-5s-1to 2×10-2s-1and constant temperature from 300℃ to 450℃.Experimental results show that the maximum elongation of the AZ31 alloy with an average grain size of about 19μm is 117%at strain rate of 10- 3s-1 and temperature of 450℃.Stress exponent and activation energy were characterized to clarify the deformation mechanisms.The enhanced ductility is dominated by solute drag dislocation creep,and the major failure mechanism is cavity growth and interlinkage.
基金Project(2008S089)supported by the Key Laboratory Fund of Liaoning Province,ChinaProject(2007010303025)supported by Shenyang Talents Supporting ProgramProject(50731002)supported by the National Natural Science Foundation of China
文摘The microstructure and tensile properties of the Mg-1.0%Sn-xY(x=1.5%,3.0%,3.5%,atom fraction)alloys extruded indirectly at 350℃ were investigated by means of optical microscopy,scanning electron microscopy and tensile test.The mean grain sizes ofα-Mg matrix in the three extruded alloys are 6,8 and 12μm,respectively,slightly increasing with the addition of Y. The relationship between microstructure and strength was discussed in detail.The results show that the addition of Y has little effect on the grain refinement of the as-extruded Mg-Sn based alloys above.The only MgSnY phase is detected in the Mg-Sn-1.5%Y alloy, and the Sn3Y5 phase in the Mg-Sn-3.5%Y alloy,whereas both of them simultaneously exist in the Mg-Sn-3.0%Y alloy.The particle shape of MgSnY and Sn3Y5 phase,inherited from the solidification,has little change before and after hot extrusion.Mg-Sn-3.0%Y alloy has the highest ultimate tensile strength(UTS),305 MPa,by over 50%compared with that of the other two alloys.
基金Project(gjd08011) supported by Shanghai Municipal Education Commission,ChinaProject (J51402) supported by Shanghai Leading Academic Discipline,China
文摘Ultrafine grain pure aluminum was produced by equal channel angular pressing and cold rolling, the deformed aluminum was annealed at 200 ℃ for 1 h. The tensile curves of deformed and annealed aluminum show that yield strength of deformed aluminum increases by 100%-300% and its elongation decreases by about 20%. After low temperature annealing, strength of annealed aluminum increases by 20% and elongation decreases by over 50%, the recovery of dislocations may be the main cause of annealing strengthening. In addition, there is an abrupt stress drop in the tensile curves of annealed aluminum and the formation of shear band is responsible for it.
基金Project(50771049)supported by the National Natural Science Foundation of ChinaProject(2004CB619301)supported by the National Basic Research Program of China
文摘Both Mg-1Mn-3.5Y and Mg-1Mn-1Y-2.5Nd alloys(mass fraction,%)were extruded at 380?C.Most of the(10^-10) crystal planes in the Mg-1Mn-3.5Y alloy are parallel to the normal direction,while most of the(10^-11)crystal planes in the Mg-1Mn-1Y-2.5Nd alloy are parallel to the normal direction.The tensile tests at room temperature,100℃ and 200℃ show that the Mg-1Mn-3.5Y alloy exhibits higher yield strength,but lower elongation to failure as compared with the Mg-1Mn-1Y-2.5Nd alloy. These differences in the tensile mechanical properties between the two alloys are mainly attributed to their different texture types and amount and distribution of the Mg24Y5 precipitates.The serration flow behavior is observed in the Mg-1Mn-1Y-2.5Nd alloy at 200℃,but does not occur in the Mg-1Mn-3.5Y alloy.The Mg-1Mn-3.5Y alloy shows the cleavage fracture mode,while the Mg-1Mn-1Y-2.5Nd alloy exhibits the dimple fracture mode.
基金Project(10876045)supported by the National Natural Science Foundation Commission of China and China Academy of Engineering PhysicsProject(50725413)supported by the National Natural Science Foundation of China+1 种基金Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(CSTS2008AB4114)supported by Chongqing Science and Technology Commission(CQ CSTC)
文摘The microstructure,mechanical properties and damping capacity of ZK60-xY(x=0,1.5%,2.5%,4.0%,mass fraction) magnesium alloys were investigated by using the optical microscope(OM),X-ray diffractometer(XRD),universal tensile testing machine and dynamic mechanical analyzer(DMA).The mechanisms for damping capacity of referred alloys were discussed by Granato-Lücke theory.The results show that Y additions remarkably reduce grain size(the average grain size is 21.6,13.0,8.6 and 4.0μm,respectively),and the tensile properties are enhanced with grain refining(the yield tensile strength increases to 292 MPa from 210 MPa and ultimate tensile strength increases to 330 MPa from 315 MPa).For the ZK60-xY(x=0,1.5%,4.0%)alloys,the damping capacity decreases with the increase of Y content.However,for the ZK60-xY(x=2.5%)alloy,the damping capacity improves abnormally,which is possibly related to the formation of Mg3Y2Zn3(W)FCC phase in this alloy.
基金supported by a grant from the Fundamental R&D Program for Energy(No.2012T100100092development of pyro-metallurgical technology for low quality urban mining by-products)+1 种基金funded by the Ministry of Knowledge EconomyKorea
文摘The effect of intermetallic compound (IMC) thickness on the thermal and mechanical properties of Al/Cu honeycomb rods was investigated. The Al/Cu honeycomb rods were fabricated using repeated hydrostatic extrusions at 200 ℃. During the process, an IMC layer with 1μm in thickness was generated at the Al/Cu interface. Different IMC thicknesses were obtained by post-heat treatment at 420 ℃ for 0.5 to 2 h. The IMC thickness increased to 10.1μm. The IMC layers were identified as Al2Cu (θ), AlCu (η2), and Al4Cu9(γ1) phases. The thermal conductivities in the longitudinal direction and cross direction decreased by 11.9% ((268±4.8) to (236±4.4) W/(m·K)) and 10.4% ((210±3.2) to (188±2.8) W/(m·K)), respectively, with increasing IMC thickness. The ultimate tensile strength and elongation of the Al/Cu honeycomb rod are (103±8.4) MPa and (73±6.2)%, respectively. The ultimate tensile strength increased to (131±6.5) MPa until the IMC thickness reached 7.7μm. It subsequently decreased to (124±3.9) MPa until the IMC thickness reached 10.1μm. The elongation of the Al/Cu honeycomb rod then sharply decreased to (29±2.5)% with increasing IMC thickness.