期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于注意力和挤压-激励Inception的双分支合成语音检测
1
作者 王晗 赵腊生 +2 位作者 张强 程银清 邱泽鹏 《计算机应用》 CSCD 北大核心 2024年第10期3217-3222,共6页
合成语音攻击给人们的生活带来巨大的威胁。为了解决现有模型从冗余信息中提取关键信息能力不足和单一模型无法综合利用多检测模型优势的问题,提出一种基于注意力和挤压-激励(SE)模块Inception(SE-Inc)的双分支(Dual-ABIB)合成语音检测... 合成语音攻击给人们的生活带来巨大的威胁。为了解决现有模型从冗余信息中提取关键信息能力不足和单一模型无法综合利用多检测模型优势的问题,提出一种基于注意力和挤压-激励(SE)模块Inception(SE-Inc)的双分支(Dual-ABIB)合成语音检测模型。首先,基于SincNet(Sinc-based convolutional neural Network)提取的初始特征图训练注意力分支合成语音检测模型,并输出注意力图;其次,将注意力图和初始特征图相乘后再叠加,并将结果作为SE-Inc分支的输入进行训练;最后,通过决策级加权融合处理2个分支获得的分类分数,从而实现合成语音检测。实验结果表明,所提模型在参数量为539×10^(3)的情况下,在ASVspoof2019数据集上获得了0.0332的最小串联检测代价函数(mint-DCF)和1.15%的等错误率(EER);与SE-ResABNet(Squeeze-Excitation ResNet Attention Branch Network)相比,所提模型在参数量仅为它的56%的情况下,min t-DCF和EER分别下降了34.5%和39.2%;同时,在ASVspoof2015和ASVspoof2021数据集上所提模型表现了更好的泛化能力。以上结果验证了所提模型能够在参数量较小的情况下,获得更低的min t-DCF和EER。 展开更多
关键词 注意力机制 挤压-激励模块 双分支 合成语音检测 决策级融合
下载PDF
基于改进残差网络的拉丝机减速箱故障诊断
2
作者 邹知成 万昌江 汝欣 《软件工程》 2024年第3期36-41,共6页
减速箱对拉丝辊的转速固定有重要作用,由于拉丝设备结构紧密,内部零件的运行状态不易于观察,因此减速箱轮齿故障导致的转速配比异常很难被及时发现,针对拉丝机减速箱存在的故障诊断环节缺失问题,提出一种遗传算法与优化注意力模块改进... 减速箱对拉丝辊的转速固定有重要作用,由于拉丝设备结构紧密,内部零件的运行状态不易于观察,因此减速箱轮齿故障导致的转速配比异常很难被及时发现,针对拉丝机减速箱存在的故障诊断环节缺失问题,提出一种遗传算法与优化注意力模块改进的残差网络的故障诊断方法。首先,通过小波包分解与带通滤波的混合方法清洗数据,依照生产车间实际情况提出综合评价指标,并按照指标需求选择小波包分解层数;其次,针对残差网络与注意力模块进行改进;最后,将经过连通域分析与二值化后的特征图送入改进后的模型进行诊断。结果表明,该方法的诊断准确率比注意力-残差网络模型(Squeeze-and-Excitation-ResNet,SE-ResNet)提升了7.32%,比卷积神经网络-极限学习机模型(Convolutional Neural Network-Extreme Learning Machine,CNN-ELM)提升了8.81%,针对注意力模块(Squeeze-and-Excitation Module,SE)的改进将模型的单次诊断时间在原来的基础上缩短0.92 s,对塑编拉丝车间中减速箱的维护具有较大的实用价值。 展开更多
关键词 故障诊断 深度学习 遗传算法 挤压-激励模块 拉丝机 残差网络
下载PDF
基于SE-DSCNN的MMC开关管故障诊断方法 被引量:5
3
作者 曾昭瑢 何怡刚 《电力自动化设备》 EI CSCD 北大核心 2022年第5期104-111,共8页
为了实现模块化多电平变换器(MMC)子模块开关管的故障诊断,提出了一种基于挤压-激励模块的深度可分离卷积神经网络(SE-DSCNN)。该网络直接利用原始电容电压数据,不需要任何的特征提取算法,能够自动提取隐藏在原始数据中的深层特征,结合... 为了实现模块化多电平变换器(MMC)子模块开关管的故障诊断,提出了一种基于挤压-激励模块的深度可分离卷积神经网络(SE-DSCNN)。该网络直接利用原始电容电压数据,不需要任何的特征提取算法,能够自动提取隐藏在原始数据中的深层特征,结合挤压-激励模块以突出通道域中具有代表性的特征,利用深度可分离卷积(DSC)来减少网络的计算量。利用滑动时间窗口将数据分段并归一化后输入提前训练好的最优模型中,模型输出预测标签。通过与其他人工特征提取方法及深度学习方法进行对比,结果表明模型参数量比具有相同卷积层数的标准卷积神经网络(CNN)减少了70.92%左右。所提方法在已有样本片段上的分类准确率及不同故障时期的诊断正确率均达99%及以上,诊断单个样本片段所需的时间约为0.34 ms,不但能区分故障早期的耦合性特征,还能实现准确、可靠、高效、快速的故障诊断。 展开更多
关键词 MMC 开关管故障 挤压-激励模块 深度可分离卷积神经网络 故障诊断
下载PDF
基于原始波形的端到端阿尔茨海默症检测方法
4
作者 陈旭初 张卫强 马勇 《电子学报》 EI CAS CSCD 北大核心 2023年第12期3582-3590,共9页
阿尔茨海默症(Alzheimer’s Disease,AD)是一种退行性疾病,随着病情加重,患者的语言能力逐渐减弱.目前已经有研究者使用梅尔谱图、梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)等声学特征对阿尔茨海默症患者和健康人进... 阿尔茨海默症(Alzheimer’s Disease,AD)是一种退行性疾病,随着病情加重,患者的语言能力逐渐减弱.目前已经有研究者使用梅尔谱图、梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)等声学特征对阿尔茨海默症患者和健康人进行分类,但是对于使用神经网络从原始波形提取特征进行阿尔茨海默症检测还缺少进一步的探索.本文提出一种基于原始波形的端到端阿尔茨海默症检测方法.该方法使用一维卷积从原始波形中提取时间维度特征,并使用含有膨胀卷积的残差块提取更复杂的特征.为进一步提高性能,在残差块中引入挤压-激励模块.在全国人机语音通讯学术会议(National Conference on Man-Machine Speech Communication,NCMMSC)2021 AD数据集上,本文提出的模型在长音频测试集、短音频测试集分别达到了86.55%和81.35%的准确率,比基线系统分别提高了6.75%、7.35%.在INTERSPEECH2020 ADReSS数据集上,模型的准确率为66.67%,比基线系统提高4.17%. 展开更多
关键词 阿尔茨海默症 语音检测 残差块 挤压-激励模块 端到端
下载PDF
基于深度残差长短记忆网络交通流量预测算法 被引量:12
5
作者 刘世泽 秦艳君 +5 位作者 王晨星 苏琳 柯其学 罗海勇 孙艺 王宝会 《计算机应用》 CSCD 北大核心 2021年第6期1566-1572,共7页
针对多步交通流量预测任务中时间空间特征提取效果不佳和预测未来时间交通流量精度低的问题,提出一种基于长短时记忆(LSTM)网络、卷积残差网络和注意力机制的融合模型。首先,利用一种基于编解码器的架构,通过在编解码器中加入LSTM网络... 针对多步交通流量预测任务中时间空间特征提取效果不佳和预测未来时间交通流量精度低的问题,提出一种基于长短时记忆(LSTM)网络、卷积残差网络和注意力机制的融合模型。首先,利用一种基于编解码器的架构,通过在编解码器中加入LSTM网络来挖掘不同尺度的时间域特征;其次,构建基于注意力机制挤压激励(SE)模块的卷积残差网络嵌入到LSTM网络结构中,从而挖掘交通流量数据中的空间域特征;最后,将编码器中获得的隐状态下的信息输入到解码器中,实现高精度多步交通流量的预测。基于真实交通数据进行实验测试和分析,实验结果表明,相较于原始的基于图卷积的模型,所提模型在北京和纽约两个交通流量公开数据集上的均方根误差(RMSE)分别获得了1.622和0.08的下降。所提模型能够高效且精确地对交通流量作出预测。 展开更多
关键词 时空数据挖掘 编解码器 长短期记忆 挤压-激励模块 空间注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部