By virtue of the technique of integration within an ordered product of operators, we derive the normal ordering expansion of a one- and two-mode combination squeezing operator for two harmonic oscillators with coordin...By virtue of the technique of integration within an ordered product of operators, we derive the normal ordering expansion of a one- and two-mode combination squeezing operator for two harmonic oscillators with coordinate- momentum coupling. It turns out that this squeezing operator just diagonalizes the Hamiltonian H=p^21/2m1+m1ω^21x^21/2+p^222m2+m2ω^22x^22/2-λx2p1 so its ground state is a one- and two-mode combination squeezed state. Quantum fluctuation in the ground state is calculated.展开更多
文摘By virtue of the technique of integration within an ordered product of operators, we derive the normal ordering expansion of a one- and two-mode combination squeezing operator for two harmonic oscillators with coordinate- momentum coupling. It turns out that this squeezing operator just diagonalizes the Hamiltonian H=p^21/2m1+m1ω^21x^21/2+p^222m2+m2ω^22x^22/2-λx2p1 so its ground state is a one- and two-mode combination squeezed state. Quantum fluctuation in the ground state is calculated.