Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure in...Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.展开更多
The q-p phase-space distribution function is a popular tool to study semiclassical physics and to describe the quantum aspects of a system. In this paper by using the pure state density operator formula of the Husimi ...The q-p phase-space distribution function is a popular tool to study semiclassical physics and to describe the quantum aspects of a system. In this paper by using the pure state density operator formula of the Husimi operator Δh(q,p;κ) = [p,q〉κκ〈p,q| we deduce the Husimi function of the excited squeezed vacuum state. Then we study the behavior of Husimi distribution graphically.展开更多
We present the continuous state vector of the total coordinate of multi-partlcle and the state vector of their total momentum, respectively, which possess completeness relation in multi-mode Fock space by virtue of th...We present the continuous state vector of the total coordinate of multi-partlcle and the state vector of their total momentum, respectively, which possess completeness relation in multi-mode Fock space by virtue of the integration within an order product (IWOP) technique. We also calculate the transition from classical transformation of variables in the states to quantum unitary operator, deduce a new multi-mode squeezing operator, and discuss its squeezing effect. In progress, it indicates that the IWOP technique provides a convenient way to construct new representation in quantum mechanics.展开更多
To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established b...To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established based on HyperXtrude software using Arbitrary Lagrangian–Eulerian(ALE)algorithm.The velocity distribution on the cross-section of the extrudate at the die exit and pressure distribution at different heights in the welding chamber were quantitatively analyzed.To obtain an uniformity of metal flow velocity at the die exit,the porthole die structure was optimized by adding baffle plates.After optimization,maximum displacement in the Y direction at the bottom of profile decreases from 1.1 to 0.15 mm,and the concave defects are remarkably improved.The research method provides an effective guidance for improving extrusion defects and optimizing the metal flow of complex hollow aluminium profiles during porthole die extrusion.展开更多
We investigate the influence of the Stark shift on the entanglement transfer from the two-mode squeezed vacuum state field to two spatially separated atoms in two-photon processes. Our results show that the Stark shif...We investigate the influence of the Stark shift on the entanglement transfer from the two-mode squeezed vacuum state field to two spatially separated atoms in two-photon processes. Our results show that the Stark shift plays an important role in such entanglement transfer. We find that when the Stark shift parameter r is small, the degree of entanglement between the two atoms increases with the increasing of the squeezing parameter ξ first, and after achieving its maximal value, the degree of entanglement will decrease to zero with the increasing of ξ; while for big r, E will increase with the increasing of ξ.展开更多
Conventional vacuum control in a milking system is accomplished by using a vacuum pump, sized for the maximum air flows into the milking system, running at a full speed. The difference between the pump capacity and th...Conventional vacuum control in a milking system is accomplished by using a vacuum pump, sized for the maximum air flows into the milking system, running at a full speed. The difference between the pump capacity and the necessary flow of air is compensated by allowing air to enter the system through a regulator. The solution presented in this paper uses a VFD (variable frequency driver) in order to drive the vacuum pump at a controlled speed, so that the air removed equals the air entering the milking system. The VFD technology is able to adjust the rate of air removal from the milking system, by changing the speed of the vacuum pump motor. The VFD is controlled by a computer using a virtual instrument in order to emulate a PID (proportion integration differentiation) regulator. The tests aimed to evaluate the vacuum regulator characteristics and vacuum stability. A statistical analysis of the experimental results was performed and it showed that there was a significant difference between the experimental results obtained for the two methods of vacuum regulation (with vacuum regulator and VFD controller respectively). The experimental results proved that the used of the VFD controller led to a higher vacuum stability in terms of the error between the set vacuum value and the achieved values.展开更多
To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes t...To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes three strategies.Firstly,the average crowding distance method is proposed,which takes into account the influence of individuals on the crowding distance and reduces the algorithm’s time complexity and computational cost,ensuring efficient external archive maintenance and improving the algorithm’s distribution.Secondly,the algorithm utilizes particle difference to guide adaptive inertia weights.In this way,the degree of disparity between a particle’s historical optimum and the population’s global optimum is used to determine the value of w.With different degrees of disparity,the size of w is adjusted nonlinearly,improving the algorithm’s convergence.Finally,the algorithm is designed to control the search direction by hierarchically selecting the globally optimal policy,which can avoid a single search direction and eliminate the lack of a random search direction,making the selection of the global optimal position more objective and comprehensive,and further improving the convergence of the algorithm.The MOPSO-MS is tested against seven other algorithms on the ZDT and DTLZ test functions,and the results show that the MOPSO-MS has significant advantages in terms of convergence and distributivity.展开更多
We show that high photon-number squeezing in bright light can be generated in both lasers and optical bistabilities by the injections of a squeezed vacuum and a classical field, and the high squeezing is maintained fo...We show that high photon-number squeezing in bright light can be generated in both lasers and optical bistabilities by the injections of a squeezed vacuum and a classical field, and the high squeezing is maintained for very strong field.展开更多
基金Projects(51221001,51275417)supported by the National Natural Science Foundation of ChinaProject(SKLSP201103)supported by the Fund of the State Key Laboratory of Solidification ProcessingProject(B08040)supported by the Introducing Talents of Discipline toUniversities,China
文摘Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.
基金The project supported by National Natural Science Foundation of China under Grant No.10775097
文摘The q-p phase-space distribution function is a popular tool to study semiclassical physics and to describe the quantum aspects of a system. In this paper by using the pure state density operator formula of the Husimi operator Δh(q,p;κ) = [p,q〉κκ〈p,q| we deduce the Husimi function of the excited squeezed vacuum state. Then we study the behavior of Husimi distribution graphically.
文摘We present the continuous state vector of the total coordinate of multi-partlcle and the state vector of their total momentum, respectively, which possess completeness relation in multi-mode Fock space by virtue of the integration within an order product (IWOP) technique. We also calculate the transition from classical transformation of variables in the states to quantum unitary operator, deduce a new multi-mode squeezing operator, and discuss its squeezing effect. In progress, it indicates that the IWOP technique provides a convenient way to construct new representation in quantum mechanics.
基金Project(U1664252) supported by the National Natural Science Foundation of ChinaProjects(31665004,31715011) supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China
文摘To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established based on HyperXtrude software using Arbitrary Lagrangian–Eulerian(ALE)algorithm.The velocity distribution on the cross-section of the extrudate at the die exit and pressure distribution at different heights in the welding chamber were quantitatively analyzed.To obtain an uniformity of metal flow velocity at the die exit,the porthole die structure was optimized by adding baffle plates.After optimization,maximum displacement in the Y direction at the bottom of profile decreases from 1.1 to 0.15 mm,and the concave defects are remarkably improved.The research method provides an effective guidance for improving extrusion defects and optimizing the metal flow of complex hollow aluminium profiles during porthole die extrusion.
基金The project supported by National Natural Science Foundation of China under Grant No.10374007
文摘We investigate the influence of the Stark shift on the entanglement transfer from the two-mode squeezed vacuum state field to two spatially separated atoms in two-photon processes. Our results show that the Stark shift plays an important role in such entanglement transfer. We find that when the Stark shift parameter r is small, the degree of entanglement between the two atoms increases with the increasing of the squeezing parameter ξ first, and after achieving its maximal value, the degree of entanglement will decrease to zero with the increasing of ξ; while for big r, E will increase with the increasing of ξ.
文摘Conventional vacuum control in a milking system is accomplished by using a vacuum pump, sized for the maximum air flows into the milking system, running at a full speed. The difference between the pump capacity and the necessary flow of air is compensated by allowing air to enter the system through a regulator. The solution presented in this paper uses a VFD (variable frequency driver) in order to drive the vacuum pump at a controlled speed, so that the air removed equals the air entering the milking system. The VFD technology is able to adjust the rate of air removal from the milking system, by changing the speed of the vacuum pump motor. The VFD is controlled by a computer using a virtual instrument in order to emulate a PID (proportion integration differentiation) regulator. The tests aimed to evaluate the vacuum regulator characteristics and vacuum stability. A statistical analysis of the experimental results was performed and it showed that there was a significant difference between the experimental results obtained for the two methods of vacuum regulation (with vacuum regulator and VFD controller respectively). The experimental results proved that the used of the VFD controller led to a higher vacuum stability in terms of the error between the set vacuum value and the achieved values.
基金National Natural Science Foundation of China(No.61702006)Open Fund of Key laboratory of Anhui Higher Education Institutes(No.CS2021-ZD01)。
文摘To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes three strategies.Firstly,the average crowding distance method is proposed,which takes into account the influence of individuals on the crowding distance and reduces the algorithm’s time complexity and computational cost,ensuring efficient external archive maintenance and improving the algorithm’s distribution.Secondly,the algorithm utilizes particle difference to guide adaptive inertia weights.In this way,the degree of disparity between a particle’s historical optimum and the population’s global optimum is used to determine the value of w.With different degrees of disparity,the size of w is adjusted nonlinearly,improving the algorithm’s convergence.Finally,the algorithm is designed to control the search direction by hierarchically selecting the globally optimal policy,which can avoid a single search direction and eliminate the lack of a random search direction,making the selection of the global optimal position more objective and comprehensive,and further improving the convergence of the algorithm.The MOPSO-MS is tested against seven other algorithms on the ZDT and DTLZ test functions,and the results show that the MOPSO-MS has significant advantages in terms of convergence and distributivity.
基金The project supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2005062
文摘We show that high photon-number squeezing in bright light can be generated in both lasers and optical bistabilities by the injections of a squeezed vacuum and a classical field, and the high squeezing is maintained for very strong field.