Consolidation of pure Alpowder was conducted at 200 ℃ by equal channel angular pressing and torsion (ECAPT) method. The grain refinement and consolidation behavior were deeply investigated by scan electronic micros...Consolidation of pure Alpowder was conducted at 200 ℃ by equal channel angular pressing and torsion (ECAPT) method. The grain refinement and consolidation behavior were deeply investigated by scan electronic microscopy (SEM) and transmission electronic microscopy (TEM). The density, hardness and room temperature compression properties of the deformed samples were measured. The experiment results show that ECAPT is an effective method of consolidating powders at relatively low temperatures. Pure A1 particles are successfully consolidated into dense bulk material after 4 passes of ECAPT at 200 ℃. The consolidated material possesses fine grain structure and excellent mechanical properties. The refinement and consolidation mechanisms were analyzed. ECAPT is a promising method to produce the high-performance bulk materials from particles.展开更多
Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,...Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.展开更多
To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zo...To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.展开更多
The deformation zone of CONFORM extrusion was divided into primary gripping zone,gripping zone,conical expansion chamber zone,cylindrical zone and sizing zone of die,and corresponding force equilibrium equations were ...The deformation zone of CONFORM extrusion was divided into primary gripping zone,gripping zone,conical expansion chamber zone,cylindrical zone and sizing zone of die,and corresponding force equilibrium equations were established using the Slab method.The deformation force formulae of CONFORM machine at any wrapping angle with an expansion chamber were obtained.Experiment on pure aluminum and Al-5%Ti-1%B alloy was conducted on the CONFORM machine self-designed.The resistance to deformation of Al-5%Ti-1%B alloy at the deformation temperature of 400℃ and the strain rate of 3.07 s-1 was measured to be 50 MPa using Gleeble-1500 thermal simulation machine.The calculation results of deformation forces for CONFORM process with an expansion chamber for pure aluminum and Al-5%Ti-1%B alloy were given.The experimental CONFORM radial force is in agreement with the radial force obtained by theoretical formula.展开更多
The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on ...The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.展开更多
In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal ch...In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process.展开更多
To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at dif...To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.展开更多
Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properti...Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.展开更多
The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were pe...The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.展开更多
Al-6Zn-2.5Mg-1.8Cu alloy ingots were prepared by squeeze casting under different specific pressures,and the fresh ingot with best mechanical properties was solid hot extruded.With the increase of the specific pressure...Al-6Zn-2.5Mg-1.8Cu alloy ingots were prepared by squeeze casting under different specific pressures,and the fresh ingot with best mechanical properties was solid hot extruded.With the increase of the specific pressure from 0 to 250 MPa,the dendrites became round and small.Because the applied pressure increased the solid solubility of alloying elements,the number of MgZn2 phases decreased.When the specific pressure increased from 250 MPa to 350 MPa,the grain size increased.After solid hot extrusion,the a(Al) grains were refined obviously and the MgZn2 phases were uniformly dispersed in the microstructure.After solid hot extrusion,the ultimate tensile strength was 605.67 MPa and the elongation was 8.1%,which were improved about 32.22%and15.71%,respectively,compared with those of the metal mold casting alloy.The fracture modes of the billet prepared by the metal mold casting and by squeeze casting were intergranular and quasi-cleavage fractures,respectively,whereas,that of the solid hot extrusion was mainly dimple fracture.The refined crystalline strengthening was the main reason to improve the strength and elongation of alloy.展开更多
During continuous extrusion,the welds were formed at the confluence of two billets.Influences of extrusion wheel rotational speed on micromorphology and properties of welds of 6063 Al alloy were investigated through m...During continuous extrusion,the welds were formed at the confluence of two billets.Influences of extrusion wheel rotational speed on micromorphology and properties of welds of 6063 Al alloy were investigated through microstructure observation,tensile test,and SEM analyses.Welding parameters were analyzed using finite element simulation.Results indicated that metal welding was remarkably affected by oxide on outer surface of the double billets during continuous extrusion.Degree of oxide breakage on the welding surface increased due to the evident increase in effective strain rate with increasing extrusion speed.The high temperature induced by increased extrusion speed accelerated the formation of metallurgical bonding.A portion of weld seam lines slowly disappeared,and the proportion of the welding interface that failed to reach metallurgical bonding was also gradually reduced.Tensile strength and elongation of the weld specimen increased with the increase of extrusion speed.展开更多
The wedge and bulge expansion tests were compared in the assessment of the seam welds strength in a tubular profile extruded at two ram speeds.In the wedge test,the expansion was determined by moving a conical punch i...The wedge and bulge expansion tests were compared in the assessment of the seam welds strength in a tubular profile extruded at two ram speeds.In the wedge test,the expansion was determined by moving a conical punch into the tube until the specimen fracture.In the bulge test,a hydrostatic tensile stress state was applied by expanding the specimen with an internal rubber plug.The two methodologies were compared in terms of load and hoop strain at fracture and by detecting the fracture morphology and location.Then,the effect of a number of design parameters was investigated in order to evaluate the robustness of the standard testing conditions.For both tests,ductile fractures appeared in the seam welds location,but the bulge test was more robust and conservative with respect to the wedge test,showing less scattered data.Thus,the performances of a second die for the tube profile,designed to optimize the seam welds quality,have been successfully assessed by the bulge test and results compared to those achieved by a novel numerical quality index,coming to a final good matching.展开更多
Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples...Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples were produced using aluminum alloy AA7022 machining chips by the use of the FSE.To this end,the microstructures and mechanical properties of the base material(BM)and the extruded samples were investigated.The corrosion resistance of the given samples was also determined using potentiodynamic polarization technique.The results showed that the samples manufactured at higher rotational speeds possessed good surface quality,the process temperature and the grain size similarly increased following the rise in rotational speed,and the mechanical properties consequently decreased.Using the FSE led to crystallite refinement,increase in volume fraction of grain boundaries,as well as re-distribution of precipitates affecting corrosion resistance.Furthermore,the findings of the corrosion tests revealed that the produced samples by the FSE had adequate corrosion resistance and the growth in die rotation rate augmented current density and subsequently reduced corrosion resistance.展开更多
Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an av...Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens.展开更多
基金Project(50875072)supported by the National Natural Science Foundation of ChinaProject(121053)supported by Fok Ying Tong Education FoundationProject(20100111110003)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Consolidation of pure Alpowder was conducted at 200 ℃ by equal channel angular pressing and torsion (ECAPT) method. The grain refinement and consolidation behavior were deeply investigated by scan electronic microscopy (SEM) and transmission electronic microscopy (TEM). The density, hardness and room temperature compression properties of the deformed samples were measured. The experiment results show that ECAPT is an effective method of consolidating powders at relatively low temperatures. Pure A1 particles are successfully consolidated into dense bulk material after 4 passes of ECAPT at 200 ℃. The consolidated material possesses fine grain structure and excellent mechanical properties. The refinement and consolidation mechanisms were analyzed. ECAPT is a promising method to produce the high-performance bulk materials from particles.
基金Projects(11272267,11102168,10932008)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by Northwestern Polytechnical University
文摘Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.
基金Projects(51334006,50274020)supported by the National Natural Science Foundation of China
文摘To determine the extrusion force of pipe fabricated by continuous casting and extrusion (CASTEX) using an expansion combination die, the metallic expansion combination die was divided into diversion zone, expansion zone, flow dividing zone, welding chamber, and sizing zone, and the corresponding stress formulae in various zones were established using the slab method. The deformation zones of CASTEX groove were divided into liquid and semisolid zone, solid primary gripping zone, and solid gripping zone, and the formulae of pipe extrusion forces were established. Experiments were carried out on the self-designed CASTEX machine to obtain the aluminum pipe and measure its extrusion force using the expansion combination die. The experimental results of radial extrusion force for aluminum pipe are in good agreement with the calculated ones.
基金Projects(51034002,50974038,50274020) supported by the National Natural Science Foundation of China
文摘The deformation zone of CONFORM extrusion was divided into primary gripping zone,gripping zone,conical expansion chamber zone,cylindrical zone and sizing zone of die,and corresponding force equilibrium equations were established using the Slab method.The deformation force formulae of CONFORM machine at any wrapping angle with an expansion chamber were obtained.Experiment on pure aluminum and Al-5%Ti-1%B alloy was conducted on the CONFORM machine self-designed.The resistance to deformation of Al-5%Ti-1%B alloy at the deformation temperature of 400℃ and the strain rate of 3.07 s-1 was measured to be 50 MPa using Gleeble-1500 thermal simulation machine.The calculation results of deformation forces for CONFORM process with an expansion chamber for pure aluminum and Al-5%Ti-1%B alloy were given.The experimental CONFORM radial force is in agreement with the radial force obtained by theoretical formula.
基金Project (51175055) supported by the National Natural Science Foundation of ChinaProject (201102020) supported by the Natural Science Foundation of Liaoning Province, ChinaProject (200921085) supported by the Liaoning BaiQian Wan Talents Program, China
文摘The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.
基金Project(51401177)supported by the National Natural Science Foundation of ChinaProject(13KJD430005)supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of ChinaProject(JSKLEDC201309)supported by Jiangsu Key Laboratory of Large Engineering Equipment Detection and Control,China
文摘In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process.
基金Projects(51231002,51271054,51571058,50671023)supported by the National Natural Science Foundation of China
文摘To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.
基金Project(51335009)supported by the National Natural Science Foundation of ChinaProject(2014JQ7273)supported by the Natural Science Foundation of Shaanxi Province of ChinaProject(CXY1514(1))supported by the Xi’an Science and Technology Plan Projects,China
文摘Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.
基金Project(51275475)supported by the National Natural Science Foundation of ChinaProject(2014BY001)supported by the Department of Education in Zhejiang Province,ChinaProject(2014EP0110)supported by the Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology,Ministry of Education and Zhejiang Province,China
文摘The possibility of the electric-hydraulic chattering technology and its application in the cold extrusion were presented.The conventional and electric-hydraulic chattering assisted backward extrusion processes were performed on 6061 aluminum alloy billets at room temperature.The experimental results showed that 5.65% reduction in the extrusion load was attained if the die and ejector were vibrated at a frequency of 100 Hz and amplitude of 0.013 mm in the longitudinal direction.The friction coefficient at the billet and tool system interface determined from the finite element analysis(FEA) decreased from 0.2 without chattering to 0.1 with application of electric-hydraulic chattering.The higher values of instantaneous velocity and direction change of material flow were achieved during the chattering assisted backward extrusion process.The strain distribution of the chattering assisted backward extrusion billet revealed lower maximum strain and smoother strain distribution in comparison with that produced by the conventional extrusion method.
基金Project(50971092)supported by the National Natural Science of Foundation of ChinaProject(201202166)supported by the Natural Science Foundation of Education Department of Liaoning Province,China
文摘Al-6Zn-2.5Mg-1.8Cu alloy ingots were prepared by squeeze casting under different specific pressures,and the fresh ingot with best mechanical properties was solid hot extruded.With the increase of the specific pressure from 0 to 250 MPa,the dendrites became round and small.Because the applied pressure increased the solid solubility of alloying elements,the number of MgZn2 phases decreased.When the specific pressure increased from 250 MPa to 350 MPa,the grain size increased.After solid hot extrusion,the a(Al) grains were refined obviously and the MgZn2 phases were uniformly dispersed in the microstructure.After solid hot extrusion,the ultimate tensile strength was 605.67 MPa and the elongation was 8.1%,which were improved about 32.22%and15.71%,respectively,compared with those of the metal mold casting alloy.The fracture modes of the billet prepared by the metal mold casting and by squeeze casting were intergranular and quasi-cleavage fractures,respectively,whereas,that of the solid hot extrusion was mainly dimple fracture.The refined crystalline strengthening was the main reason to improve the strength and elongation of alloy.
基金financial supports from the National Natural Science Foundation of China(Nos.51705062,51675074)the Department of Education Fund Item of Liaoning Province,China(No.JDL 2019021)。
文摘During continuous extrusion,the welds were formed at the confluence of two billets.Influences of extrusion wheel rotational speed on micromorphology and properties of welds of 6063 Al alloy were investigated through microstructure observation,tensile test,and SEM analyses.Welding parameters were analyzed using finite element simulation.Results indicated that metal welding was remarkably affected by oxide on outer surface of the double billets during continuous extrusion.Degree of oxide breakage on the welding surface increased due to the evident increase in effective strain rate with increasing extrusion speed.The high temperature induced by increased extrusion speed accelerated the formation of metallurgical bonding.A portion of weld seam lines slowly disappeared,and the proportion of the welding interface that failed to reach metallurgical bonding was also gradually reduced.Tensile strength and elongation of the weld specimen increased with the increase of extrusion speed.
文摘The wedge and bulge expansion tests were compared in the assessment of the seam welds strength in a tubular profile extruded at two ram speeds.In the wedge test,the expansion was determined by moving a conical punch into the tube until the specimen fracture.In the bulge test,a hydrostatic tensile stress state was applied by expanding the specimen with an internal rubber plug.The two methodologies were compared in terms of load and hoop strain at fracture and by detecting the fracture morphology and location.Then,the effect of a number of design parameters was investigated in order to evaluate the robustness of the standard testing conditions.For both tests,ductile fractures appeared in the seam welds location,but the bulge test was more robust and conservative with respect to the wedge test,showing less scattered data.Thus,the performances of a second die for the tube profile,designed to optimize the seam welds quality,have been successfully assessed by the bulge test and results compared to those achieved by a novel numerical quality index,coming to a final good matching.
文摘Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples were produced using aluminum alloy AA7022 machining chips by the use of the FSE.To this end,the microstructures and mechanical properties of the base material(BM)and the extruded samples were investigated.The corrosion resistance of the given samples was also determined using potentiodynamic polarization technique.The results showed that the samples manufactured at higher rotational speeds possessed good surface quality,the process temperature and the grain size similarly increased following the rise in rotational speed,and the mechanical properties consequently decreased.Using the FSE led to crystallite refinement,increase in volume fraction of grain boundaries,as well as re-distribution of precipitates affecting corrosion resistance.Furthermore,the findings of the corrosion tests revealed that the produced samples by the FSE had adequate corrosion resistance and the growth in die rotation rate augmented current density and subsequently reduced corrosion resistance.
基金Project(2016YFB0301104) supported by the National Key Research and Development Program of ChinaProjects(51671041,51531002) supported by the National Natural Science Foundation of ChinaProject(cstc2017jcyjBX0040) supported by the Natural Science Foundation of Chongqing City,China
文摘Ultrafine-grained aluminum processed by a new severe plastic deformation technique, accumulative extrusion bonding (AEB), was investigated. Microstructural characterization indicated good interfacial bonding and an average grain size of ~440 nm was obtained after six passes. Tensile testing revealed that the strength reached the maximum value of 195 MPa and the total elongation exceeded 16% after five passes. The hardness was also significantly improved and almost reached saturation after the first pass. SEM fractography of AEB-processed specimens after tensile test showed that failure mode was shear ductile fracture with elongated shallow dimples. Comparison with conventional accumulative roll bonding indicates that this new AEB technique is more effective in refining grain and improving mechanical properties of the specimens.