In this paper the desorption kinetics of volatile in condensed mode polyethylene process is studied through experiments. It is found that though the residual volatile in particles at the later stage of desorption acco...In this paper the desorption kinetics of volatile in condensed mode polyethylene process is studied through experiments. It is found that though the residual volatile in particles at the later stage of desorption accounts for a relatively small portion of the total quantity, the desorption of this part of volatile requires much longer time than at the earlier stage. For high requirement of devolatilization, the total time needed will be predominately determined by the residual amount of volatile in particles. Temperature has greater effect on the desorption rate than other influence factors, especially in the later period of desorption. A model is proposed to calculate the volatile desorption rate for condensed mode polyethylene process.展开更多
The nonadiabatic dynamics of methyl nitrate(CH_(3)ONO_(2))is studied with the on-the-fy trajectory surface hopping dynamics at the ADC(2)level.The results confirmed the existence of the ultrafast nonadiabatic decay to...The nonadiabatic dynamics of methyl nitrate(CH_(3)ONO_(2))is studied with the on-the-fy trajectory surface hopping dynamics at the ADC(2)level.The results confirmed the existence of the ultrafast nonadiabatic decay to the electronic ground state.When the dynamics starts from S_(1) and S_(2),the photoproducts are CH_(3)O+NO_(2),consistent with previous results obtained from the experimental studies and theoretical dynamics simulations at more accurate XMS-CASPT2 level.The photolysis products are CH_(3)O+NO_(2) at the ADC(2)level when the dynamics starts from S3,while different photolysis products were obtained in previous experimental and theoretical works.These results demonstrate that the ADC(2)method may still be useful for treating the photolysis mechanism of CH_(3)ONO_(2) at the long-wavelength UV excitation,while great caution should be paid due to its inaccurate performance in the description of the photolysis dynamics at the short-wavelength UV excitation.This gives valuable information to access the accuracy when other alkyl nitrates are treated at the ADC(2)level.展开更多
The aim of this paper is to obtain the exponential energy decayof the solution of the wave equation with variable coefficients under suitable linear boundary feedback. Multiplier method and Riemannian geometry method ...The aim of this paper is to obtain the exponential energy decayof the solution of the wave equation with variable coefficients under suitable linear boundary feedback. Multiplier method and Riemannian geometry method are used.展开更多
Quantum dots sensitized nanocrystalline Tit2 solar cells (QDSSCs) are promising third-generation pbotovoltalc devices. In comparison with conventional dye-sensitized solar cells (DSSCs), the efficiency of QDSSCs i...Quantum dots sensitized nanocrystalline Tit2 solar cells (QDSSCs) are promising third-generation pbotovoltalc devices. In comparison with conventional dye-sensitized solar cells (DSSCs), the efficiency of QDSSCs is still very low (about 3%). In this paper, the electrochemical impedance spectroscopy technology has been adopted to investigate the quasi-Fermi level and the cartier dynamics of the colloidal CdSe QDs sensitized Tit2 eletrode with S2-/Sf redox electrolytes and the series resistance of the QDSSCs. In comparison with the conventional DSSCs with I^-3/Г as redox electrolytes, the energy difference between the conduction band edge and the quasi-Fermi levels of the Tit2 films (or the Fermi levels of the redox electrolytes) in QDSSCs has been decreased by about 0.3 V, resulting in the decrease of Voc by this value. The increases of the electrolyte dif- fussion resistance and the charge transfer resistance between Pt counter electrodes and S2-/Sx redox electrolytes were attributed to the decrease of the fill factors. However, the electron lifetime and electron diffussion length for QDSSCs are longer than those for DSSCs due to the retardation of the electron recombination by the adsorbed cysteine at the surfaces of the TiO2 films. It is indicated that electron recombination at the TiO2/electrolyte interface is not the main reason for the lower Jsc of the colloidal QDs sensitized QDSSCs. Improving light harvesting efficiency and photoelectron injection efficiency should be considered in the future for such kind of QDSSCs.展开更多
文摘In this paper the desorption kinetics of volatile in condensed mode polyethylene process is studied through experiments. It is found that though the residual volatile in particles at the later stage of desorption accounts for a relatively small portion of the total quantity, the desorption of this part of volatile requires much longer time than at the earlier stage. For high requirement of devolatilization, the total time needed will be predominately determined by the residual amount of volatile in particles. Temperature has greater effect on the desorption rate than other influence factors, especially in the later period of desorption. A model is proposed to calculate the volatile desorption rate for condensed mode polyethylene process.
基金supported by the National Natural Science Foundation of China(No.21933011,No.21873112)。
文摘The nonadiabatic dynamics of methyl nitrate(CH_(3)ONO_(2))is studied with the on-the-fy trajectory surface hopping dynamics at the ADC(2)level.The results confirmed the existence of the ultrafast nonadiabatic decay to the electronic ground state.When the dynamics starts from S_(1) and S_(2),the photoproducts are CH_(3)O+NO_(2),consistent with previous results obtained from the experimental studies and theoretical dynamics simulations at more accurate XMS-CASPT2 level.The photolysis products are CH_(3)O+NO_(2) at the ADC(2)level when the dynamics starts from S3,while different photolysis products were obtained in previous experimental and theoretical works.These results demonstrate that the ADC(2)method may still be useful for treating the photolysis mechanism of CH_(3)ONO_(2) at the long-wavelength UV excitation,while great caution should be paid due to its inaccurate performance in the description of the photolysis dynamics at the short-wavelength UV excitation.This gives valuable information to access the accuracy when other alkyl nitrates are treated at the ADC(2)level.
基金the National Natural Science Foundation of China(Nos.51709240 and 51579144)the High-Tech Ship Research Project Supported by Ministry of Industry and Information Technology(No.K24352)the Equipment Pre-research Project(No.41407010202)
基金This research was supported by the National Key Project of China.
文摘The aim of this paper is to obtain the exponential energy decayof the solution of the wave equation with variable coefficients under suitable linear boundary feedback. Multiplier method and Riemannian geometry method are used.
基金supported by the Study Abroad Project of Chinese Academy of Sciences in 2007Foundation of Renewable Energy, Gas Hydrate Key Laboratory of Chinese Academy of Sciences in 2007the National Natural Science Foundation of China (21073193)
文摘Quantum dots sensitized nanocrystalline Tit2 solar cells (QDSSCs) are promising third-generation pbotovoltalc devices. In comparison with conventional dye-sensitized solar cells (DSSCs), the efficiency of QDSSCs is still very low (about 3%). In this paper, the electrochemical impedance spectroscopy technology has been adopted to investigate the quasi-Fermi level and the cartier dynamics of the colloidal CdSe QDs sensitized Tit2 eletrode with S2-/Sf redox electrolytes and the series resistance of the QDSSCs. In comparison with the conventional DSSCs with I^-3/Г as redox electrolytes, the energy difference between the conduction band edge and the quasi-Fermi levels of the Tit2 films (or the Fermi levels of the redox electrolytes) in QDSSCs has been decreased by about 0.3 V, resulting in the decrease of Voc by this value. The increases of the electrolyte dif- fussion resistance and the charge transfer resistance between Pt counter electrodes and S2-/Sx redox electrolytes were attributed to the decrease of the fill factors. However, the electron lifetime and electron diffussion length for QDSSCs are longer than those for DSSCs due to the retardation of the electron recombination by the adsorbed cysteine at the surfaces of the TiO2 films. It is indicated that electron recombination at the TiO2/electrolyte interface is not the main reason for the lower Jsc of the colloidal QDs sensitized QDSSCs. Improving light harvesting efficiency and photoelectron injection efficiency should be considered in the future for such kind of QDSSCs.