The volatilization kinetics of senarmontite(Sb_2O_3) was analyzed in a neutral atmosphere in two temperature ranges: 550-615 °C(roasting temperature) and 660-1100 °C(melting temperature) by using a th...The volatilization kinetics of senarmontite(Sb_2O_3) was analyzed in a neutral atmosphere in two temperature ranges: 550-615 °C(roasting temperature) and 660-1100 °C(melting temperature) by using a thermogravimetric analysis method under various gas flow rates and using a 1.3 m L ceramic crucible(11 mm in internal diameter and 14 mm in height). The effect of particle size was also analyzed. The experimental results of mass loss data, X-ray diffraction(XRD) analysis of partially reacted samples and thermodynamic studies indicate that the senarmontite becomes volatile in the form of Sb_4O_6(g) without the formation of any intermediary compound in the entire temperature range. At roasting temperatures, the volatilization kinetics of Sb_2O_3 was analyzed using the model X=kappt. The volatilization reaction was controlled by the surface chemical reaction and an activation energy value of 193.0 k J/mol was obtained in this temperature range. Based on the volatilization kinetics at the melting temperatures, for linear behaviour in nitrogen gas, kinetic constants were determined, and an activation energy of 73.9 k J/mol was calculated for the volatilization reaction with a surface area of 8.171×10^(-5)m^2.展开更多
The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficien...The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.展开更多
Self-assembly of colloidal nanocrystals(NCs)into large-scale superlattices with complex and controllable structures has attracted extensive attention due to their collective properties and promising device application...Self-assembly of colloidal nanocrystals(NCs)into large-scale superlattices with complex and controllable structures has attracted extensive attention due to their collective properties and promising device applications.Plasmonic NCs are very popular for long-range ordered superstructures by virtue of their collective nanogaps for electromagnetic field enhancement,in particular bulk-scale single-layer assembly.Large-area two-dimensional(2D)quasinanosheets(QNSs)composed of mono-component Au NCs or multi-component Au@ZnS core-shell hetero-nanocrystals(HNCs)were successfully prepared,via careful solvent evaporation-induced interfacial self-assembly.The entire selfassembly process was carried out on the liquid-air surface and mediated simply by tuning the operating temperatures and concentrations of the NCs.Specifically,monolayer and double-layer 2D QNSs in tens of micrometers scale with different stacking models were fabricated by precisely controlling the solvent evaporation rate and colloidal concentration.展开更多
Supramolecular polymer complexes with small molecules are self-assembled through non-covalent interactions and have been proposed for a wide variety of applications in materials science and nanoscience.Our research gr...Supramolecular polymer complexes with small molecules are self-assembled through non-covalent interactions and have been proposed for a wide variety of applications in materials science and nanoscience.Our research group has recently shown the possibility of forming highly ordered nanofibers of supramolecular complexes in their thermodynamically stable state using the electrospinning technique.The ultrafast solvent evaporation rate of electrospinning made possible the in-depth characterization of complexes that had never been prepared in their pure state before because of kinetic issues associated with their formation by conventional approaches.The improved understanding of the formation mechanism allowed us to extend the concept to other techniques featuring a fast solvent evaporation rate,such as electrospray and spin-coating.In this article,we review our most significant contributions in this research field.展开更多
According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution i...According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.展开更多
The emission and contact drying kinetics of the paper mill sludge (PMS) were studied through experiments carried out in a paddle dryer. To get a better understanding of its drying mechanism, a penetration model develo...The emission and contact drying kinetics of the paper mill sludge (PMS) were studied through experiments carried out in a paddle dryer. To get a better understanding of its drying mechanism, a penetration model developed by Tsotsas and Schlünder (1986) was used to simulate the drying kinetics of the PMS. The result indicated that this kinetics could be divided into three phases: pasty, lumpy and granular phases, and could be successfully simulated by the penetration model as the related sludge parameters were integrated into the model. The emission rate curves of the volatile compounds (VCs) were interrelated to the drying rate curve of the PMS, especially for volatile fatty acids (VFAs) and ammonia in this study.展开更多
Halide perovskite single crystals(HPSCs)provide a unique platform to study the optoelectronic properties of such emerging semiconductor materials,while the temperature induced crystal growth method often has an increa...Halide perovskite single crystals(HPSCs)provide a unique platform to study the optoelectronic properties of such emerging semiconductor materials,while the temperature induced crystal growth method often has an increased solute integration speed and/or unavoidable solute consumption,resulting in a soaring or slumping crystal growth rate of HPSCs.Here,we developed a universal and facile solvent-vola tilization-limited-growth(SVG)strategy to finely control the crystal growth rate by the fine-control-valve for high quality crystal grown through solution processes.The grown HPSCs by SVG method exhibited a record low trap density of 2.8×10^(8)cm^(-3)and a high charge carrier mobility-lifetime product(μτproduct)of 0.021 cm2/V,indicating the excellent crystal quality.The crystal surface defects were further passivated by oxygen suppliers as Lewis base,which led to a reduction of surface leakage current by two times when using for low dose rate X-ray detection.Such HPSC X-ray detector displayed a high sensitivity of 1274μC/(Gyair cm^(2))with a lowest detectable dose rate of 0.56μGyair/s under 120 keV hard X-ray.Further applications including alloy composition analysis and metal flaw detection by HPSC detectors were also demonstrated,which not only shows the bright future for product quality inspection and non-destructive materials analysis,but also paves the way for growing high quality single crystals and fabricating polycrystalline films.展开更多
文摘The volatilization kinetics of senarmontite(Sb_2O_3) was analyzed in a neutral atmosphere in two temperature ranges: 550-615 °C(roasting temperature) and 660-1100 °C(melting temperature) by using a thermogravimetric analysis method under various gas flow rates and using a 1.3 m L ceramic crucible(11 mm in internal diameter and 14 mm in height). The effect of particle size was also analyzed. The experimental results of mass loss data, X-ray diffraction(XRD) analysis of partially reacted samples and thermodynamic studies indicate that the senarmontite becomes volatile in the form of Sb_4O_6(g) without the formation of any intermediary compound in the entire temperature range. At roasting temperatures, the volatilization kinetics of Sb_2O_3 was analyzed using the model X=kappt. The volatilization reaction was controlled by the surface chemical reaction and an activation energy value of 193.0 k J/mol was obtained in this temperature range. Based on the volatilization kinetics at the melting temperatures, for linear behaviour in nitrogen gas, kinetic constants were determined, and an activation energy of 73.9 k J/mol was calculated for the volatilization reaction with a surface area of 8.171×10^(-5)m^2.
基金Project(51204210) supported by the National Natural Science Foundation of ChinaProject(2011AA061001) supported by the National High Technology Research and Development Program of ChinaProject(2012BAC12B04) supported by the National Science&Technology Pillar Program during Twelfth Five-Year Plan of China
文摘The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.
基金supported by the National Natural Science Foundation of China(NSFC,51872030,51631001,21801015,21643003,51702016,51501010 and 21703219)the Fundamental Research Funds for the Central Universities+1 种基金Beijing Institute of Technology Research Fund Program for Young ScholarsJoint R&D Plan of HongKong,Macao,Taiwan and Beijing(Z191100001619002)。
文摘Self-assembly of colloidal nanocrystals(NCs)into large-scale superlattices with complex and controllable structures has attracted extensive attention due to their collective properties and promising device applications.Plasmonic NCs are very popular for long-range ordered superstructures by virtue of their collective nanogaps for electromagnetic field enhancement,in particular bulk-scale single-layer assembly.Large-area two-dimensional(2D)quasinanosheets(QNSs)composed of mono-component Au NCs or multi-component Au@ZnS core-shell hetero-nanocrystals(HNCs)were successfully prepared,via careful solvent evaporation-induced interfacial self-assembly.The entire selfassembly process was carried out on the liquid-air surface and mediated simply by tuning the operating temperatures and concentrations of the NCs.Specifically,monolayer and double-layer 2D QNSs in tens of micrometers scale with different stacking models were fabricated by precisely controlling the solvent evaporation rate and colloidal concentration.
基金supported by a grant and a graduate scholarship (MRL)from the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘Supramolecular polymer complexes with small molecules are self-assembled through non-covalent interactions and have been proposed for a wide variety of applications in materials science and nanoscience.Our research group has recently shown the possibility of forming highly ordered nanofibers of supramolecular complexes in their thermodynamically stable state using the electrospinning technique.The ultrafast solvent evaporation rate of electrospinning made possible the in-depth characterization of complexes that had never been prepared in their pure state before because of kinetic issues associated with their formation by conventional approaches.The improved understanding of the formation mechanism allowed us to extend the concept to other techniques featuring a fast solvent evaporation rate,such as electrospray and spin-coating.In this article,we review our most significant contributions in this research field.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272346)the National Basic Research Program of China("973"Project)(Grant No.2013CB733100)
文摘According to the three-dimensional geometry of the engagement,the explicit algebraic expression of differential geometric guidance command(DGGC)is proposed.Compared with the existing solutions,the algebraic solution is much simpler and better for the further research of the characteristics of DGGC.Time delay control(TDC)is a useful method to tackle the uncertainty problem of a control system.Based on TDC,taking the target maneuvering acceleration as a disturbance,the estimation algorithm of the target maneuvering acceleration is presented,which can be introduced in DGGC to improve its performance.Then,the augmented DGGC(ADGGC)is obtained.The numerical simulation of intercepting a high maneuvering target is conducted to demonstrate the effectiveness of ADGGC.
基金Project (No. 2007C03003) supported by the Key Project of Science and Technology of Zhejiang Province, China
文摘The emission and contact drying kinetics of the paper mill sludge (PMS) were studied through experiments carried out in a paddle dryer. To get a better understanding of its drying mechanism, a penetration model developed by Tsotsas and Schlünder (1986) was used to simulate the drying kinetics of the PMS. The result indicated that this kinetics could be divided into three phases: pasty, lumpy and granular phases, and could be successfully simulated by the penetration model as the related sludge parameters were integrated into the model. The emission rate curves of the volatile compounds (VCs) were interrelated to the drying rate curve of the PMS, especially for volatile fatty acids (VFAs) and ammonia in this study.
基金the Fundamental Research Funds for the Central Universities,Jilin UniversityJilin University Scinece and Technology Innovation Research Team(2017TD-06)。
文摘Halide perovskite single crystals(HPSCs)provide a unique platform to study the optoelectronic properties of such emerging semiconductor materials,while the temperature induced crystal growth method often has an increased solute integration speed and/or unavoidable solute consumption,resulting in a soaring or slumping crystal growth rate of HPSCs.Here,we developed a universal and facile solvent-vola tilization-limited-growth(SVG)strategy to finely control the crystal growth rate by the fine-control-valve for high quality crystal grown through solution processes.The grown HPSCs by SVG method exhibited a record low trap density of 2.8×10^(8)cm^(-3)and a high charge carrier mobility-lifetime product(μτproduct)of 0.021 cm2/V,indicating the excellent crystal quality.The crystal surface defects were further passivated by oxygen suppliers as Lewis base,which led to a reduction of surface leakage current by two times when using for low dose rate X-ray detection.Such HPSC X-ray detector displayed a high sensitivity of 1274μC/(Gyair cm^(2))with a lowest detectable dose rate of 0.56μGyair/s under 120 keV hard X-ray.Further applications including alloy composition analysis and metal flaw detection by HPSC detectors were also demonstrated,which not only shows the bright future for product quality inspection and non-destructive materials analysis,but also paves the way for growing high quality single crystals and fabricating polycrystalline films.