包装件振动可靠性的分析和优化需要构建高效准确的车辆随机振动载荷分析模型。该研究将车辆建模为单自由度参数激励系统,分析车辆在平稳载荷下的加速度响应。基于Mathieu方程分析车辆动态响应特性,结果表明,车辆响应中出现少量的大幅振...包装件振动可靠性的分析和优化需要构建高效准确的车辆随机振动载荷分析模型。该研究将车辆建模为单自由度参数激励系统,分析车辆在平稳载荷下的加速度响应。基于Mathieu方程分析车辆动态响应特性,结果表明,车辆响应中出现少量的大幅振动响应的原因是参数激励系统中随机过程β(t)的波动引起了系统的失稳。分别构建车辆在稳态、失稳和衰减条件下的响应分析方法,建立了车辆加速度响应的概率密度函数分析方法,构建了根据记录的试验数据识别系统参数的方法。分析结果表明,该研究建立的车辆随机振动分析方法能够高效准确地再现车辆非平稳随机振动的时域特征及概率密度函数(probability density function,PDF),为研究包装件振动可靠性提供了高效准确的分析基础。展开更多
To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the dif...To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.展开更多
The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature...The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min.展开更多
Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sen...Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.展开更多
For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machi...For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.展开更多
At a shallow water station (6 m in depth), an internal oscillation event which consisted of one or two wave-like features, with a period of 3 h and a height of 1.5 m, was observed. The velocities within the water colu...At a shallow water station (6 m in depth), an internal oscillation event which consisted of one or two wave-like features, with a period of 3 h and a height of 1.5 m, was observed. The velocities within the water column were modified by the event during the flood phase of the tide; a multi-layered velocity structure and intense shear were generated. Further investigations are required to understand fully the mechanism for the formation of such an event.展开更多
With science and technology development,vibration testing as the most important item in reliability test is becoming more and more important,at the same time,vibrate condition becoming more and more complicated,the ph...With science and technology development,vibration testing as the most important item in reliability test is becoming more and more important,at the same time,vibrate condition becoming more and more complicated,the phenomenon increases that the output of controller goes beyond controlling range so that destroy the specimen. In this paper,some skills such as how to set the parameters of force controller,where to place the sensor,which material to be chosen and which skills to be used while making jigs were introduced to avoid the just matter. At last,some examples were given to prove the validity of the method proposed.展开更多
The chattering noise problem of reed switch sensor signal for Automatic Meter Reading system was analyzed experimentally under various types of external vibrations and shocks. The external vibration level amplitude wa...The chattering noise problem of reed switch sensor signal for Automatic Meter Reading system was analyzed experimentally under various types of external vibrations and shocks. The external vibration level amplitude was measured with an accelerometer. To apply for water flow measurement devices, the reed switch sensors should keep high reliability. But the measured digital meter data are occurred difference or errors by chattering noise. The reed switch contains chattering error by itself at the force equivalent position. The vibrations such as passing vehicle near to the reed switch installed location causes chattering. In order to reduce chattering error, most system uses just software methods, for example using digital filter algorithm and also statistical calibration methods. However software approaches were implemented for reducing chattering error, there has still generated chattering error due to external mechanical vibrations and magnetic field. The chattering errors can be reduced by changing leaf spring structure using mechanical hysteresis characteristics.展开更多
In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of free...The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.展开更多
文摘包装件振动可靠性的分析和优化需要构建高效准确的车辆随机振动载荷分析模型。该研究将车辆建模为单自由度参数激励系统,分析车辆在平稳载荷下的加速度响应。基于Mathieu方程分析车辆动态响应特性,结果表明,车辆响应中出现少量的大幅振动响应的原因是参数激励系统中随机过程β(t)的波动引起了系统的失稳。分别构建车辆在稳态、失稳和衰减条件下的响应分析方法,建立了车辆加速度响应的概率密度函数分析方法,构建了根据记录的试验数据识别系统参数的方法。分析结果表明,该研究建立的车辆随机振动分析方法能够高效准确地再现车辆非平稳随机振动的时域特征及概率密度函数(probability density function,PDF),为研究包装件振动可靠性提供了高效准确的分析基础。
文摘To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.
基金Project(2011M500772)supported by China Postdoctoral Science Foundation of ChinaProject(2007CB613701)supported by the National Basic Research Program of ChinaProject(2009AA033501)supported by the National High-tech R&D Program of China
文摘The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min.
文摘Adaptive truss structures are a new kind of structures with integrated active members,whose dynamic characteristies can be beneficially modified to meet mission requirements.Active members containing actuating and sensing units are the major components of adaptive truss structures.Modeling of adaptive truss structures is a key step to analyze the structural dynamic characteristics.A new experimental modal analysis approach,in which active members are used as excitatiDn sources for modal test,has been proposed in this paper.The excitation forces generated by the active members, which are different from the excitation forces exerted on structures in the conventional modal test,are internal forces for the truss structures.The relation between internal excitation forces and external forces is revealed such that the traditional identification method can be adopted to obtain modal parameters of adaptive structures.Placement problem of the active member in adaptive truss structures is also discussed in this work. Modal test and analysis are conducted with a planar adaptive truss structure by using piezoelectric active members in order to verify the feasibility and effectiveness of the proposed method.
基金Project(10033135-2009-11) supported by the Korean Ministry of Knowledge Economy (MKE) through HNK. Co,Ltd.
文摘For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.
文摘At a shallow water station (6 m in depth), an internal oscillation event which consisted of one or two wave-like features, with a period of 3 h and a height of 1.5 m, was observed. The velocities within the water column were modified by the event during the flood phase of the tide; a multi-layered velocity structure and intense shear were generated. Further investigations are required to understand fully the mechanism for the formation of such an event.
文摘With science and technology development,vibration testing as the most important item in reliability test is becoming more and more important,at the same time,vibrate condition becoming more and more complicated,the phenomenon increases that the output of controller goes beyond controlling range so that destroy the specimen. In this paper,some skills such as how to set the parameters of force controller,where to place the sensor,which material to be chosen and which skills to be used while making jigs were introduced to avoid the just matter. At last,some examples were given to prove the validity of the method proposed.
文摘The chattering noise problem of reed switch sensor signal for Automatic Meter Reading system was analyzed experimentally under various types of external vibrations and shocks. The external vibration level amplitude was measured with an accelerometer. To apply for water flow measurement devices, the reed switch sensors should keep high reliability. But the measured digital meter data are occurred difference or errors by chattering noise. The reed switch contains chattering error by itself at the force equivalent position. The vibrations such as passing vehicle near to the reed switch installed location causes chattering. In order to reduce chattering error, most system uses just software methods, for example using digital filter algorithm and also statistical calibration methods. However software approaches were implemented for reducing chattering error, there has still generated chattering error due to external mechanical vibrations and magnetic field. The chattering errors can be reduced by changing leaf spring structure using mechanical hysteresis characteristics.
文摘In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
基金Project(LZ2015022)supported by Educational Commission of Liaoning Province of ChinaProjects(51138001,51178081)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035905)supported by the Basic Research Program of ChinaProjects(DUT15LK34,DUT14QY10)supported by Fundamental Research Funds for the Central Universities,China
文摘The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.