期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
利用深度神经网络实现分布式相干瑞利光纤振动事件分类 被引量:1
1
作者 彭任华 周琰 +2 位作者 袁旻忞 郑成诗 李晓东 《应用声学》 CSCD 北大核心 2023年第4期833-843,共11页
该文利用分布式相干瑞利光纤传感系统,在西气东输一线无锡至苏州段开展现场测试,采集了光纤沿线车辆行走、机械挖掘、人工锄地、定向钻孔等8种振动作业产生的光纤信号,并提出了一种具有5层结构的全连接深度神经网络用于振动事件分类识... 该文利用分布式相干瑞利光纤传感系统,在西气东输一线无锡至苏州段开展现场测试,采集了光纤沿线车辆行走、机械挖掘、人工锄地、定向钻孔等8种振动作业产生的光纤信号,并提出了一种具有5层结构的全连接深度神经网络用于振动事件分类识别以实现不同振动作业的分级管理。振动作业产生的光纤信号能量集中在低频,该文利用梅尔对数频率的非均匀特性提取了25维单帧信号特征量,并将连续40帧信号特征量组合成高维向量作为网络输入特征向量,实现对不同振动作业时变特性的建模。分类识别结果表明,基于深度神经网络结构的振动信号分类识别器能够有效识别不同振动作业类型,实际线路实验验证了该文算法的有效性。 展开更多
关键词 分布式光纤传感 安全预警 深度神经网络 振动信号分类
下载PDF
A Roller Bearing Fault Diagnosis Method Based on Improved LMD and SVM 被引量:3
2
作者 程军圣 史美丽 +1 位作者 杨宇 杨丽湘 《Journal of Measurement Science and Instrumentation》 CAS 2011年第1期1-5,共5页
Aiming at the non-stationary feattwes of the roller bearing fault vibration signal, a roller bearing fault diagnosis methtxt based on improved Local Mean Decomposition (LMD) and Support Vector Machine (SVM) is pro... Aiming at the non-stationary feattwes of the roller bearing fault vibration signal, a roller bearing fault diagnosis methtxt based on improved Local Mean Decomposition (LMD) and Support Vector Machine (SVM) is proposed. In this paper, firstly, the wavelet analysis is introduced to the signal decomposition and reconstruction; secondly, the LMD method is used to decompose the recomtnion signal obtained by the wavelet analysis into a ntmaber of Product Ftmctions (PFs) that include main fault characteristics, thus, the initial feattwe vector matrixes could be formed automatically; Thirdly, by applying the Singular Valueition (SVD) techniques to the initial feature vector matrixes, the singular values of the matrixes can be obtained, which can be used as the fault feature vectors of the roller bearing and serve as the input vectors of the SVM classifier; Finally, the recognition results can be obtained from the SVM output. The results of analysis show that the propsed method can be applied to roller beating fault diagnosis effectively. 展开更多
关键词 LMD roller bearing singular value decomposition support vector machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部