In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consi...In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consideration of the effects of nonlinear dynamic gear mesh excitation, flexible rotors and bearings. Integration method was used to investigate the non-linear dynamic response of the system. The results imply that when the mesh frequency is near the natural frequency of gear pair, it is the first primary resonance, the bifurcation appears, and the vibration becomes to be chaotic motion rapidly. When the speed is close to the natural frequency of the first-order bending vibration, it is the second primary resonance, the periodic motion changes to chaos by period doubling bifurcation. The vibratory measurement of test-bed of the gear transmission system was performed. Accelerometers were employed to measure the high frequency vibration. Experimental results show that the vibration acceleration of the gear transmission system includes mesh frequency and sideband. The numerical calculation results of low speed can be validated by experimental results basically. It means that the presented non-linear dynamic model of the gear transmission system is right.展开更多
A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation d...A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation diagram of the system's motion state with rotational speed of sun gear was conducted through four steps.As a bifurcation parameter,the effect of rotational speed on the bifurcation properties of the system was assessed.The study results reveal that periodic motion is the main motion state of planetary gear train in low speed region when ns<2 350 r/min,but chaos motion state is dominant in high speed region when ns>2 350 r/min,The way of periodic motion to chaos is doubling bifurcation.There are two kinds of unstable modes and nine unstable regions in the speed region when 1 000 r/min<ns<3 000 r/min.展开更多
With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods fo...With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods for their solution are elaborated. The example of torsion wave propagation in an elongated drill string is considered. Computer simulation of auto-oscillation generation in the examined system is performed for the cases of stationary and non-stationary variations of the perturbation parameter. The diapason of the drilling rotation velocity values corresponding to regimes of stable self-excited periodic motions of the system is found. This domain is shown to be limited by the states of the Poincare-Hopf bifurcations. Owing to the feature that the stated problem is singularly perturbed, the autovibrations are of relaxation type with fast and slow motions. Influence of the length of the uniform and articulated drill strings on the bifurcation values of their angular velocities of generation and accomplishment of the auto-oscillation processes in the drill strings is discussed.展开更多
A reduced three-degree-of-freedom model simulating the fluid-structure interactions (FSI) of the turbine blades and the on- coming air flows is proposed. The equations of motions consist of the coupling of bending a...A reduced three-degree-of-freedom model simulating the fluid-structure interactions (FSI) of the turbine blades and the on- coming air flows is proposed. The equations of motions consist of the coupling of bending and torsion of a blade as well as a van der Pol oscillation which represents the time-varying of the fluid. The 1:1 internal resonance of the system is analyzed with the multiple scale method, and the modulation equations are derived. The two-parameter bifurcation diagrams are computed. The effects of the system parameters, including the detuning parameter and the reduced frequency, on responses of the struc- ture and fluid are investigated. Bifurcation curves are computed and the stability is determined by examining the eigenvalues of the Jacobian matrix. The results indicate that rich dynamic phenomena of the steady-state solutions including the sad- dle-node and Hopf bifurcations can occur under certain parameter conditions. The parameter region where the unstable solu- tions occur should be avoided to keep the safe operation of the blades. The analytical solutions are verified by the direct nu- merical simulations.展开更多
文摘In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consideration of the effects of nonlinear dynamic gear mesh excitation, flexible rotors and bearings. Integration method was used to investigate the non-linear dynamic response of the system. The results imply that when the mesh frequency is near the natural frequency of gear pair, it is the first primary resonance, the bifurcation appears, and the vibration becomes to be chaotic motion rapidly. When the speed is close to the natural frequency of the first-order bending vibration, it is the second primary resonance, the periodic motion changes to chaos by period doubling bifurcation. The vibratory measurement of test-bed of the gear transmission system was performed. Accelerometers were employed to measure the high frequency vibration. Experimental results show that the vibration acceleration of the gear transmission system includes mesh frequency and sideband. The numerical calculation results of low speed can be validated by experimental results basically. It means that the presented non-linear dynamic model of the gear transmission system is right.
基金Project(50775108) supported by the National Natural Science Foundation of China
文摘A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation diagram of the system's motion state with rotational speed of sun gear was conducted through four steps.As a bifurcation parameter,the effect of rotational speed on the bifurcation properties of the system was assessed.The study results reveal that periodic motion is the main motion state of planetary gear train in low speed region when ns<2 350 r/min,but chaos motion state is dominant in high speed region when ns>2 350 r/min,The way of periodic motion to chaos is doubling bifurcation.There are two kinds of unstable modes and nine unstable regions in the speed region when 1 000 r/min<ns<3 000 r/min.
文摘With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods for their solution are elaborated. The example of torsion wave propagation in an elongated drill string is considered. Computer simulation of auto-oscillation generation in the examined system is performed for the cases of stationary and non-stationary variations of the perturbation parameter. The diapason of the drilling rotation velocity values corresponding to regimes of stable self-excited periodic motions of the system is found. This domain is shown to be limited by the states of the Poincare-Hopf bifurcations. Owing to the feature that the stated problem is singularly perturbed, the autovibrations are of relaxation type with fast and slow motions. Influence of the length of the uniform and articulated drill strings on the bifurcation values of their angular velocities of generation and accomplishment of the auto-oscillation processes in the drill strings is discussed.
基金supported by the National Basic Research Program of China(“973” Project)(Grant No.2015CB057405)the National Natural Science Foundation of China(Grant No.11372082)the State Scholarship Fund of CSC
文摘A reduced three-degree-of-freedom model simulating the fluid-structure interactions (FSI) of the turbine blades and the on- coming air flows is proposed. The equations of motions consist of the coupling of bending and torsion of a blade as well as a van der Pol oscillation which represents the time-varying of the fluid. The 1:1 internal resonance of the system is analyzed with the multiple scale method, and the modulation equations are derived. The two-parameter bifurcation diagrams are computed. The effects of the system parameters, including the detuning parameter and the reduced frequency, on responses of the struc- ture and fluid are investigated. Bifurcation curves are computed and the stability is determined by examining the eigenvalues of the Jacobian matrix. The results indicate that rich dynamic phenomena of the steady-state solutions including the sad- dle-node and Hopf bifurcations can occur under certain parameter conditions. The parameter region where the unstable solu- tions occur should be avoided to keep the safe operation of the blades. The analytical solutions are verified by the direct nu- merical simulations.