Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
Objective To observe the clinical application value of total free-breathing cardiac MR(CMR)examination preliminarily.Methods Two patients who underwent CMR scanning under free-breathing state,including cine,motion cor...Objective To observe the clinical application value of total free-breathing cardiac MR(CMR)examination preliminarily.Methods Two patients who underwent CMR scanning under free-breathing state,including cine,motion correction T1 and T2 mapping,blood flow imaging,and late gadolinium enhancement scanning were retrospectively enrolled,and the qualities of the above images were evaluated and compared with that of conventional CMR images under breath-holding state.Results No significant difference of imaging quality was found between total free-breathing and conventional breath-holding CMR.The differences of left ventricular ejection fraction,cardiac output,left ventricular end-diastolic volume index and left ventricular mass measured based on CMR images under different breath conditions were limited.Conclusion Total free-breathing CMR was feasible in clinical practice,which could provide"one-stop"evaluation of cardiac structure,function and myocardial histological characteristics,hence having promising clinical prospects.展开更多
Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ...Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.展开更多
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
文摘Objective To observe the clinical application value of total free-breathing cardiac MR(CMR)examination preliminarily.Methods Two patients who underwent CMR scanning under free-breathing state,including cine,motion correction T1 and T2 mapping,blood flow imaging,and late gadolinium enhancement scanning were retrospectively enrolled,and the qualities of the above images were evaluated and compared with that of conventional CMR images under breath-holding state.Results No significant difference of imaging quality was found between total free-breathing and conventional breath-holding CMR.The differences of left ventricular ejection fraction,cardiac output,left ventricular end-diastolic volume index and left ventricular mass measured based on CMR images under different breath conditions were limited.Conclusion Total free-breathing CMR was feasible in clinical practice,which could provide"one-stop"evaluation of cardiac structure,function and myocardial histological characteristics,hence having promising clinical prospects.
基金supported by the National Natural Science Foundation of China (No.51975293)Aeronautical Science Foundation of China (No.2019ZD052010)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20230502)。
文摘Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.