Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed fr...Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.展开更多
This paper proposes a numerical methodology for the prediction of the first three modes of vibration of an electric motor fixed on a rigid base. A deep literature review supported the production of four ad hoc prototy...This paper proposes a numerical methodology for the prediction of the first three modes of vibration of an electric motor fixed on a rigid base. A deep literature review supported the production of four ad hoc prototypes that aided the development of the proposed approach. Tests carried out with the prototypes led to the procurement of the modal parameters be used to calibrate the numerical models, as well as the FRF (frequency response function) curves be used to validate the numerical solution. The validated model allowed structural changes to be then promoted on the prototypes, in order to make them more robust to variations in manufacturing and assembling processes. The mentioned adjustments and structural changes were accomplished by means of a process of structural optimization using Genetic Algorithm. The solution was developed based on the commercial finite element code ANSYS. The practical results obtained in this study show that a numerical model for modal analysis of an electric motor fixed on a rigid base with errors less than 3% for the first three modes of vibration can be achieved, allowing positive structural changes to be performed in the machine design that result in the minimization of manufacturing reworks associated with the dynamic behavior of the studied motor.展开更多
The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equival...The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small.展开更多
文摘Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.
文摘This paper proposes a numerical methodology for the prediction of the first three modes of vibration of an electric motor fixed on a rigid base. A deep literature review supported the production of four ad hoc prototypes that aided the development of the proposed approach. Tests carried out with the prototypes led to the procurement of the modal parameters be used to calibrate the numerical models, as well as the FRF (frequency response function) curves be used to validate the numerical solution. The validated model allowed structural changes to be then promoted on the prototypes, in order to make them more robust to variations in manufacturing and assembling processes. The mentioned adjustments and structural changes were accomplished by means of a process of structural optimization using Genetic Algorithm. The solution was developed based on the commercial finite element code ANSYS. The practical results obtained in this study show that a numerical model for modal analysis of an electric motor fixed on a rigid base with errors less than 3% for the first three modes of vibration can be achieved, allowing positive structural changes to be performed in the machine design that result in the minimization of manufacturing reworks associated with the dynamic behavior of the studied motor.
基金Project(51375226)supported by the National Natural Science Foundation of ChinaProject(20113218110017)supported by the Doctoral Program Foundation of Institutions of Higher Education of China+2 种基金Project(PAPD)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(CXZZ11_0199)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(2014)supported by the the Fundamental Research Funds for the Central Universities,China
文摘The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small.