The dynamics of quantum entanglement described by the yon Neumann entropy is studied for the localized states of Fermi-resonance coupling vibrations in molecule CS2, where the interacting energy between the stretching...The dynamics of quantum entanglement described by the yon Neumann entropy is studied for the localized states of Fermi-resonance coupling vibrations in molecule CS2, where the interacting energy between the stretching and the bending modes is considered to establish a connection between entanglement and energy. It is shown that entanglement reveals dominant anti-correlation with the interacting energy for the stretch-localized state, while that exhibits dominantly positive correlation for the bend-localized state. The entanglement and the energy for the dislocalized states are discussed as well. Those are useful for molecular quantum computing and quantum information in high dimensional states.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.11174099).
文摘The dynamics of quantum entanglement described by the yon Neumann entropy is studied for the localized states of Fermi-resonance coupling vibrations in molecule CS2, where the interacting energy between the stretching and the bending modes is considered to establish a connection between entanglement and energy. It is shown that entanglement reveals dominant anti-correlation with the interacting energy for the stretch-localized state, while that exhibits dominantly positive correlation for the bend-localized state. The entanglement and the energy for the dislocalized states are discussed as well. Those are useful for molecular quantum computing and quantum information in high dimensional states.