Vacuum ultraviolet photodissociation dynamics of N2O+hν→N2(X^(1)Σg+)+O(^(1)S0)in the short wavelength tail of D^(1)Σ+band has been investigated using the time-sliced velocity-mapped ion imaging technique by probin...Vacuum ultraviolet photodissociation dynamics of N2O+hν→N2(X^(1)Σg+)+O(^(1)S0)in the short wavelength tail of D^(1)Σ+band has been investigated using the time-sliced velocity-mapped ion imaging technique by probing the images of the O(^(1)S0)photoproducts at a set of photolysis wavelengths including 121.47 nm,122.17 nm,123.25 nm and 123.95 nm.The product total kinetic energy release distributions,vibrational state distributions of the N2(X^(1)Σg+)photofragments and angular anisotropy parameters have been obtained by analyzing the raw O(^(1)S0)images.It is noted that additional vibrationally excited photoproducts(3≤v≤8)with a Boltzmann-like feature start to appear except the non-statistical component as the photolysis wavelength decreases to 123.25 nm,and the corresponding populations become more pronounced with decreasing of the photolysis wavelength.Furthermore,the vibrational state specific anisotropy parameterβat each photolysis wavelength exhibits a drastic fluctuation nearβ=1.75 at v<8,and decreases to a minimum as the vibrational quantum number further increases.While the overall anisotropy parameterβfor the N2(X^(1)Σg+)+O(^(1)S0)channel presents a roughly monotonical increase from 1.63 at 121.47 nm to 1.95 at 123.95 nm.The experimental observations suggest that there is at least one fast nonadiabatic pathway from initially prepared D^(1)Σ+state to the dissociative state with bent geometry dominating to generate the additional vibrational structures at high photoexcitation energies.展开更多
基金supported by the National Natural Science Foundation of China(No.21773213)。
文摘Vacuum ultraviolet photodissociation dynamics of N2O+hν→N2(X^(1)Σg+)+O(^(1)S0)in the short wavelength tail of D^(1)Σ+band has been investigated using the time-sliced velocity-mapped ion imaging technique by probing the images of the O(^(1)S0)photoproducts at a set of photolysis wavelengths including 121.47 nm,122.17 nm,123.25 nm and 123.95 nm.The product total kinetic energy release distributions,vibrational state distributions of the N2(X^(1)Σg+)photofragments and angular anisotropy parameters have been obtained by analyzing the raw O(^(1)S0)images.It is noted that additional vibrationally excited photoproducts(3≤v≤8)with a Boltzmann-like feature start to appear except the non-statistical component as the photolysis wavelength decreases to 123.25 nm,and the corresponding populations become more pronounced with decreasing of the photolysis wavelength.Furthermore,the vibrational state specific anisotropy parameterβat each photolysis wavelength exhibits a drastic fluctuation nearβ=1.75 at v<8,and decreases to a minimum as the vibrational quantum number further increases.While the overall anisotropy parameterβfor the N2(X^(1)Σg+)+O(^(1)S0)channel presents a roughly monotonical increase from 1.63 at 121.47 nm to 1.95 at 123.95 nm.The experimental observations suggest that there is at least one fast nonadiabatic pathway from initially prepared D^(1)Σ+state to the dissociative state with bent geometry dominating to generate the additional vibrational structures at high photoexcitation energies.