A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short...A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.展开更多
This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain ...This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.展开更多
A semi-active force tracking PI controller is formulated and analyzed for a magnetorheological (MR) fluid-based damper in conjunction with a quarter-vehicle model. Two different models of the MR-damper are integrated ...A semi-active force tracking PI controller is formulated and analyzed for a magnetorheological (MR) fluid-based damper in conjunction with a quarter-vehicle model. Two different models of the MR-damper are integrated into the closed-loop system model, which includes: a model based upon the mean force-velocity (f-v) behaviour; and a model synthesis comprising inherent nonsmooth hysteretic force and the force limiting properties of the MR damper. The vehicle models are analyzed to study the vibration attenuation performance of the MR-damper using the semi-active force tracking PI control algorithm. The simulation results are also presented to demonstrate the influence of the damper nonlinearity, specifically the hysteresis, on the suspension performance. The results show that the proposed control strategy can yield superior vibration attenuation performance of the vehicle suspension actuated by the controllable MR-damper not only in the sprung mass resonance and the ride zones, but also in the vicinity of the wheel-hop. The results further show that the presence of damper hystersis deteriorates the suspension performance.展开更多
This paper presents an LC VCO with auto-amplitude control (AAC), in which pMOS FETs are used,and the varactors are directly connected to ground to widen the linear range of Kvco. The AAC circuitry adds little noise ...This paper presents an LC VCO with auto-amplitude control (AAC), in which pMOS FETs are used,and the varactors are directly connected to ground to widen the linear range of Kvco. The AAC circuitry adds little noise to the VCO but provides it with robust performance over a wide temperature and carrier frequency range.The VCO is fabricated in a chartered 50GHz 0.35μm SiGe BiCMOS process. The measurements show that it has - 127. 27dBc/Hz phase noise at 1MHz offset and a linear gain of 32.4MHz/V between 990MHz and 1.14GHz.The whole circuit draws 6. 6mA current from 5V supply.展开更多
The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the...The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.展开更多
文摘A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.
文摘This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.
文摘A semi-active force tracking PI controller is formulated and analyzed for a magnetorheological (MR) fluid-based damper in conjunction with a quarter-vehicle model. Two different models of the MR-damper are integrated into the closed-loop system model, which includes: a model based upon the mean force-velocity (f-v) behaviour; and a model synthesis comprising inherent nonsmooth hysteretic force and the force limiting properties of the MR damper. The vehicle models are analyzed to study the vibration attenuation performance of the MR-damper using the semi-active force tracking PI control algorithm. The simulation results are also presented to demonstrate the influence of the damper nonlinearity, specifically the hysteresis, on the suspension performance. The results show that the proposed control strategy can yield superior vibration attenuation performance of the vehicle suspension actuated by the controllable MR-damper not only in the sprung mass resonance and the ride zones, but also in the vicinity of the wheel-hop. The results further show that the presence of damper hystersis deteriorates the suspension performance.
文摘This paper presents an LC VCO with auto-amplitude control (AAC), in which pMOS FETs are used,and the varactors are directly connected to ground to widen the linear range of Kvco. The AAC circuitry adds little noise to the VCO but provides it with robust performance over a wide temperature and carrier frequency range.The VCO is fabricated in a chartered 50GHz 0.35μm SiGe BiCMOS process. The measurements show that it has - 127. 27dBc/Hz phase noise at 1MHz offset and a linear gain of 32.4MHz/V between 990MHz and 1.14GHz.The whole circuit draws 6. 6mA current from 5V supply.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.