【目的】齿轮副时变啮合刚度作为齿轮系统最主要的内部激励之一,是齿轮系统产生振动噪声的重要原因。在以往的研究中,往往采用齿面修形和引入减振器来改善系统的振动响应,鲜有文献研究齿轮副啮合刚度波动对系统振动特性的影响。以斜齿...【目的】齿轮副时变啮合刚度作为齿轮系统最主要的内部激励之一,是齿轮系统产生振动噪声的重要原因。在以往的研究中,往往采用齿面修形和引入减振器来改善系统的振动响应,鲜有文献研究齿轮副啮合刚度波动对系统振动特性的影响。以斜齿轮为研究对象,提出了一种低波动啮合刚度设计方法以改善斜齿轮系统的振动特性。【方法】由于斜齿轮副在啮合过程中接触线长度会发生变化,从而产生刚度波动,因此,设计方法的核心思想是根据啮合原理推导出齿轮在啮合过程中接触线总长度变化最小所需要满足的条件;而后与有限元法进行对比,验证参数设计方法以及建立的啮合刚度模型的正确性和有效性。建立8自由度斜齿轮动力学模型,对比了优化前后反映振动能量的均方根图,分析了加载静态传递误差(Loaded Static Transfer Error,LSTE)和动态响应。最后,讨论了所提出的两种优化设计方法。【结果】结果表明,适当的参数设计可以显著降低齿轮啮合刚度波动,并优化LSTE、改善系统振动。研究结果为齿轮系统的减振设计提供了理论支持。展开更多
文摘【目的】齿轮副时变啮合刚度作为齿轮系统最主要的内部激励之一,是齿轮系统产生振动噪声的重要原因。在以往的研究中,往往采用齿面修形和引入减振器来改善系统的振动响应,鲜有文献研究齿轮副啮合刚度波动对系统振动特性的影响。以斜齿轮为研究对象,提出了一种低波动啮合刚度设计方法以改善斜齿轮系统的振动特性。【方法】由于斜齿轮副在啮合过程中接触线长度会发生变化,从而产生刚度波动,因此,设计方法的核心思想是根据啮合原理推导出齿轮在啮合过程中接触线总长度变化最小所需要满足的条件;而后与有限元法进行对比,验证参数设计方法以及建立的啮合刚度模型的正确性和有效性。建立8自由度斜齿轮动力学模型,对比了优化前后反映振动能量的均方根图,分析了加载静态传递误差(Loaded Static Transfer Error,LSTE)和动态响应。最后,讨论了所提出的两种优化设计方法。【结果】结果表明,适当的参数设计可以显著降低齿轮啮合刚度波动,并优化LSTE、改善系统振动。研究结果为齿轮系统的减振设计提供了理论支持。