期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于VMD和改进D-S证据理论的中速磨煤机振动故障识别研究 被引量:3
1
作者 赵征 丁建平 《现代电子技术》 2022年第7期80-85,共6页
为解决中速磨煤机无法在线识别振动故障及传统的机器分类算法无法准确表达故障信息的问题,提出变分模态分解(VMD)和改进D-S证据理论相结合的磨煤机振动故障识别方法。首先,通过对磨煤机从正常到发生故障过程中运行参数(磨加载油压、磨... 为解决中速磨煤机无法在线识别振动故障及传统的机器分类算法无法准确表达故障信息的问题,提出变分模态分解(VMD)和改进D-S证据理论相结合的磨煤机振动故障识别方法。首先,通过对磨煤机从正常到发生故障过程中运行参数(磨加载油压、磨出口风压等)的时域分析,选取磨电流这一参数表征磨煤机振动状态;其次,利用VMD对不同状态的磨电流时间序列进行处理,提取分解后各模态分量的能量比作为故障特征;通过改进D-S证据理论对各特征参数进行多源信息融合得到最终的基本概率赋值,用于决策分析;最后,通过实验验证了所提方法的有效性。结果表明:改进D-S证据理论可以更加全面地表达故障信息,增加诊断结果的可信度;该方法可以在故障发生2 min后准确地识别引起振动故障的原因,同时利于检修人员采取相应的解决措施。 展开更多
关键词 振动故障识别 中速磨煤机 变分模态分解 改进D-S证据理论 特征提取 信息融合 故障诊断
下载PDF
A bearing fault diagnosis method based on sparse decomposition theory 被引量:1
2
作者 张新鹏 胡茑庆 +1 位作者 胡雷 陈凌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1961-1969,共9页
The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibrat... The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals. 展开更多
关键词 fault diagnosis sparse decomposition dictionary learning representation error
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部