We have prepared the 2-(quinolin-8-yloxy)-acetic acid and characterized it by infrared and Raman spectroscopies in the solid phase. The Density Functional Theory (DFT) method, together with the 6-31G^* and 6-311...We have prepared the 2-(quinolin-8-yloxy)-acetic acid and characterized it by infrared and Raman spectroscopies in the solid phase. The Density Functional Theory (DFT) method, together with the 6-31G^* and 6-311++ G^** basis sets, show that three stable molecules, for the anhydrous and monohydrated compounds were theoretically determined in the gas phase, and that probably the two more stable conformations are present in the solid phase of the monohydrated compound. The harmonic vibrational wavenumbers for the optimized geometries were calculated at B3LYP/6-31G^*and B3LYP/6-311++G^** levels. For a complete assignment of all the observed bands in the vibrational spectra the DFT calculations were combined with Pulay's scaled quantum mechanical force field (SQMFF) methodology in order to fit the theoretical Wavenumber values to the experimental ones. The characteristics of the electronic delocalization of all structures of both forms were performed by using natural bond orbital (NBO), while the corresponding topological properties of electronic charge density are analysed by employing Bader's atoms in molecules theory (AIM).展开更多
The A-band resonance Raman spectra of thiourea were obtained in water and acetonitrile solution. B3LYP/6-311++G(3df,3pd) and RCIS/6-311++G(3df,3pd) calculations were done to elucidate the ultraviolet electroni...The A-band resonance Raman spectra of thiourea were obtained in water and acetonitrile solution. B3LYP/6-311++G(3df,3pd) and RCIS/6-311++G(3df,3pd) calculations were done to elucidate the ultraviolet electronic transitions, the distorted geometry structure and the saddle point of thiourea in 21A excited state, respectively. The resonance Raman spectra were assigned. The absorption spectrum and resonance Raman intensities were modeled using Heller's time-dependent wavepacket approach to resonance Raman scattering. The results indicate that largest change in the displacement takes place with the C--S stretch mode u6 (|△|=0.95) and noticeable changes appear in the H5N3H6+H8N4H7 wag v5 (|△|=0.19), NCN symmetric stretch^-C--S stretch+N3H6+H8N4 wag v4 (|△|=0.18), while the moderate intensities of 2-15 and 4-15 are mostly due to the large excited state frequency changes of v15, but not due to its significant change in the normal mode displacement. The mechanism of the appearance of even overtones of the S-CN2 out of plane deformation is explored. The results indicate that a Franck-Condon region saddle point is the driving force for the quadric phonon mechanism within the standard A-term of resonance Raman scattering, which leads to the pyramidalization of the carbon center and the geometry distortion of thiourea molecule in 21A excited state.展开更多
Given multi-resolution decomposition of wavelet packet transforms,wavelet packet frequency band energy has been deduced from different bands of blasting vibration signals.Our deduction reflects the total effect of all...Given multi-resolution decomposition of wavelet packet transforms,wavelet packet frequency band energy has been deduced from different bands of blasting vibration signals.Our deduction reflects the total effect of all three key elements(intensity,frequency and duration of vibration)of blasting vibration. We considered and discuss the dynamic response of structures and the effect of inherent characteristics of controlled structures to blasting vibration.Frequency band response coefficients for controlled structures by blasting vibration have been obtained.We established multi-factor blasting vibration safety criteria,referred to as response energy criteria.These criteria reflect the total effect of intensity, frequency and duration of vibration and the inherent characteristics(natural frequency and damping ratio)of dynamic responses from controlled structures themselves.Feasibility and reliability of the criteria are validated by an example.展开更多
文摘We have prepared the 2-(quinolin-8-yloxy)-acetic acid and characterized it by infrared and Raman spectroscopies in the solid phase. The Density Functional Theory (DFT) method, together with the 6-31G^* and 6-311++ G^** basis sets, show that three stable molecules, for the anhydrous and monohydrated compounds were theoretically determined in the gas phase, and that probably the two more stable conformations are present in the solid phase of the monohydrated compound. The harmonic vibrational wavenumbers for the optimized geometries were calculated at B3LYP/6-31G^*and B3LYP/6-311++G^** levels. For a complete assignment of all the observed bands in the vibrational spectra the DFT calculations were combined with Pulay's scaled quantum mechanical force field (SQMFF) methodology in order to fit the theoretical Wavenumber values to the experimental ones. The characteristics of the electronic delocalization of all structures of both forms were performed by using natural bond orbital (NBO), while the corresponding topological properties of electronic charge density are analysed by employing Bader's atoms in molecules theory (AIM).
基金This work was supported by the National Natural Science Foundation of China (No.21033002 and No.20803066) and the National Basic Research Program of China (No.2007CB815203).
文摘The A-band resonance Raman spectra of thiourea were obtained in water and acetonitrile solution. B3LYP/6-311++G(3df,3pd) and RCIS/6-311++G(3df,3pd) calculations were done to elucidate the ultraviolet electronic transitions, the distorted geometry structure and the saddle point of thiourea in 21A excited state, respectively. The resonance Raman spectra were assigned. The absorption spectrum and resonance Raman intensities were modeled using Heller's time-dependent wavepacket approach to resonance Raman scattering. The results indicate that largest change in the displacement takes place with the C--S stretch mode u6 (|△|=0.95) and noticeable changes appear in the H5N3H6+H8N4H7 wag v5 (|△|=0.19), NCN symmetric stretch^-C--S stretch+N3H6+H8N4 wag v4 (|△|=0.18), while the moderate intensities of 2-15 and 4-15 are mostly due to the large excited state frequency changes of v15, but not due to its significant change in the normal mode displacement. The mechanism of the appearance of even overtones of the S-CN2 out of plane deformation is explored. The results indicate that a Franck-Condon region saddle point is the driving force for the quadric phonon mechanism within the standard A-term of resonance Raman scattering, which leads to the pyramidalization of the carbon center and the geometry distortion of thiourea molecule in 21A excited state.
基金provided by the National Natural Science Foundation of China(No.51064009)the National 11th Five-Year Science & Technology Program of China (No.2008BAB32B03)+1 种基金the Natural Science Foundation of Jiangxi Province(No.2009GQC0036)the Youth Science Foundation of Education Department of Jiangxi Province(No.GJJ09515)
文摘Given multi-resolution decomposition of wavelet packet transforms,wavelet packet frequency band energy has been deduced from different bands of blasting vibration signals.Our deduction reflects the total effect of all three key elements(intensity,frequency and duration of vibration)of blasting vibration. We considered and discuss the dynamic response of structures and the effect of inherent characteristics of controlled structures to blasting vibration.Frequency band response coefficients for controlled structures by blasting vibration have been obtained.We established multi-factor blasting vibration safety criteria,referred to as response energy criteria.These criteria reflect the total effect of intensity, frequency and duration of vibration and the inherent characteristics(natural frequency and damping ratio)of dynamic responses from controlled structures themselves.Feasibility and reliability of the criteria are validated by an example.