General solutions for coupled three dimensional equations of piezoelectric media were used in this work to obtain some analytical solutions for free vibration of piezoelectric annular plates. These solutions not only...General solutions for coupled three dimensional equations of piezoelectric media were used in this work to obtain some analytical solutions for free vibration of piezoelectric annular plates. These solutions not only satisfy the governing equations at every point in the concerned region but also satisfy the prescribed boundary conditions at every point on the boundaries. Therefore, they are three-dimensional exact. Numerical results are finally tabulated.展开更多
Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were...Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.展开更多
Solid-state wave gyroscope is one kind of high-performance vibrating gyroscopes. The present work develops a new type of solid-state wave gyroscope—a ring vibrating gyroscope driven by piezo-electrodes located on the...Solid-state wave gyroscope is one kind of high-performance vibrating gyroscopes. The present work develops a new type of solid-state wave gyroscope—a ring vibrating gyroscope driven by piezo-electrodes located on the sidewall of the structure. It has advantages of large vibrating amplitude, high energy conversion efficiency and compact structure. The working principle of the piezoelectric ring vibrating gyroscope is based on the inertia effect of the standing wave in the axisymmetric resonator caused by Coriolis force. The finite element method(FEM) analysis has been implemented to characterize the ring type resonator. The prototypal gyroscope was manufactured and has been trimmed by mechanical way. The harmonic response of the ring vibrating gyroscope has been tested. The resonating frequency of the ring type resonator is 3715.6 Hz and the frequency split of the two working modes before trimming was about 5 Hz and was reduced to sub-0.01 Hz after trimming procedure. The Q-factor of the ring type resonator was 2504. Then, the turntable experiment was implemented. The measured scale factor k is 9.24 m V/[(°)·s] and the full scale range of the gyroscope is larger than ±300(°)/s.展开更多
The coupled vibration characteristics of multiple elastic annular baffles of the same inner radius in a partially liquid-filled rigid cylindrical container were studied. The liquid domain was divided into several simp...The coupled vibration characteristics of multiple elastic annular baffles of the same inner radius in a partially liquid-filled rigid cylindrical container were studied. The liquid domain was divided into several simple sub-domains so that the liquid velocity potential in each liquid sub-domain was of class C 1 with continuous boundary conditions. Based on the superposition principle, the general solution of the liquid velocity potential corresponding to each liquid sub-domain was obtained by means of the method of separation of variables. The coupled modes of the multiple elastic annular baffles were expressed in terms of dry-modal functions. The free surface condition, the interface conditions and coupled vibration conditions were expressed in terms of Fourier series along the liquid height and Bessel series in the radial direction, respectively. Stable and fast numerical computations were investigated by the convergence study. Excellent agreements have been achieved in the comparison of re- suits obtained by the proposed approach with those given by the finite element software ADINA. The natural frequencies and mode shapes versus the position, the inner radius and the number of the annular baffles were thoroughly discussed.展开更多
The twin impulse wave leads to very complicated flow fields, such as Mach stem, spherical waves, and vortex ring. The twin impulse wave discharged from the exits of the two tubes placed in parallel is investigated to ...The twin impulse wave leads to very complicated flow fields, such as Mach stem, spherical waves, and vortex ring. The twin impulse wave discharged from the exits of the two tubes placed in parallel is investigated to understand the detailed flow physics associated with the twin impulse wave, compared with those in a single impulse wave. In the current study, the merging phenomena and propagation characteristics of the impulse waves are investigated using a shock tube experiment and by numerical computations. The Harten-Yee''s total variation diminishing (TVD) scheme is used to solve the unsteady two-dimensional compressible Euler equations. The Mach number Ms of incident shock wave is changed below 1.5 and the distance between two-parallel tubes, L/d, is changed from 1.2 to 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. The results obtained show that on the symmetric axis between two-parallel tubes, the peak pressure produced by the twin impulse waves and its location strongly depend upon the distance between two-parallel tubes, L/d and the incident shock Mach number, Ms. The predicted Schlieren images represent the measured twin-impulse wave with a good accuracy.展开更多
文摘General solutions for coupled three dimensional equations of piezoelectric media were used in this work to obtain some analytical solutions for free vibration of piezoelectric annular plates. These solutions not only satisfy the governing equations at every point in the concerned region but also satisfy the prescribed boundary conditions at every point on the boundaries. Therefore, they are three-dimensional exact. Numerical results are finally tabulated.
基金Project(51075350)supported by the National Natural Science Foundation of China
文摘Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.
基金Projects(51335011,51275522)supported by the National Natural Science Foundation of ChinaProject(HPCM-2013-08)supported by Key Lab Open Foundation of State Key Laboratory of High Performance(Complex Manufacturing),Central South University,China
文摘Solid-state wave gyroscope is one kind of high-performance vibrating gyroscopes. The present work develops a new type of solid-state wave gyroscope—a ring vibrating gyroscope driven by piezo-electrodes located on the sidewall of the structure. It has advantages of large vibrating amplitude, high energy conversion efficiency and compact structure. The working principle of the piezoelectric ring vibrating gyroscope is based on the inertia effect of the standing wave in the axisymmetric resonator caused by Coriolis force. The finite element method(FEM) analysis has been implemented to characterize the ring type resonator. The prototypal gyroscope was manufactured and has been trimmed by mechanical way. The harmonic response of the ring vibrating gyroscope has been tested. The resonating frequency of the ring type resonator is 3715.6 Hz and the frequency split of the two working modes before trimming was about 5 Hz and was reduced to sub-0.01 Hz after trimming procedure. The Q-factor of the ring type resonator was 2504. Then, the turntable experiment was implemented. The measured scale factor k is 9.24 m V/[(°)·s] and the full scale range of the gyroscope is larger than ±300(°)/s.
基金supported by the National Natural Science Foundation of China (Grant No. 11172123)
文摘The coupled vibration characteristics of multiple elastic annular baffles of the same inner radius in a partially liquid-filled rigid cylindrical container were studied. The liquid domain was divided into several simple sub-domains so that the liquid velocity potential in each liquid sub-domain was of class C 1 with continuous boundary conditions. Based on the superposition principle, the general solution of the liquid velocity potential corresponding to each liquid sub-domain was obtained by means of the method of separation of variables. The coupled modes of the multiple elastic annular baffles were expressed in terms of dry-modal functions. The free surface condition, the interface conditions and coupled vibration conditions were expressed in terms of Fourier series along the liquid height and Bessel series in the radial direction, respectively. Stable and fast numerical computations were investigated by the convergence study. Excellent agreements have been achieved in the comparison of re- suits obtained by the proposed approach with those given by the finite element software ADINA. The natural frequencies and mode shapes versus the position, the inner radius and the number of the annular baffles were thoroughly discussed.
文摘The twin impulse wave leads to very complicated flow fields, such as Mach stem, spherical waves, and vortex ring. The twin impulse wave discharged from the exits of the two tubes placed in parallel is investigated to understand the detailed flow physics associated with the twin impulse wave, compared with those in a single impulse wave. In the current study, the merging phenomena and propagation characteristics of the impulse waves are investigated using a shock tube experiment and by numerical computations. The Harten-Yee''s total variation diminishing (TVD) scheme is used to solve the unsteady two-dimensional compressible Euler equations. The Mach number Ms of incident shock wave is changed below 1.5 and the distance between two-parallel tubes, L/d, is changed from 1.2 to 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. The results obtained show that on the symmetric axis between two-parallel tubes, the peak pressure produced by the twin impulse waves and its location strongly depend upon the distance between two-parallel tubes, L/d and the incident shock Mach number, Ms. The predicted Schlieren images represent the measured twin-impulse wave with a good accuracy.