为研究涡街流量计在管道周期振动情况下的抗振性能,对国内广泛应用的应力式模拟涡街流量计,在气体流量管道周期振动试验装置上进行了不同振动加速度和方向的试验.通过对振动产生仪表系数相对误差的研究,得出模拟涡街流量计的抗振加速度...为研究涡街流量计在管道周期振动情况下的抗振性能,对国内广泛应用的应力式模拟涡街流量计,在气体流量管道周期振动试验装置上进行了不同振动加速度和方向的试验.通过对振动产生仪表系数相对误差的研究,得出模拟涡街流量计的抗振加速度,并分析了此时涡街流量传感器输出信号的品质特征.最后,为与模拟涡街作比较,对横河和ABB公司生产的数字涡街流量计进行了相同的管道周期振动试验,研究了数字涡街的抗振性能,并发现振动倍频信号是导致仪表系数相对误差出现的主要原因.
Abstract:
To study the pipeline periodic vibration influence on the anti-vibration performance of vortex flowmeters,some experiments under different vibrating accelerations and directions have been carried out on the application-specific pipe periodic vibrating facility. The analog vortex flowmeter based on piezoelectric effect is tested firstly and its meter coefficient relative error caused by vibrations is investigated. Then the anti-vibrating acceleration is obtained and the signal quality of the vortex flow sensor is analyzed as well. Finally, in comparison with the analog vortex flowmeter, the same pipeline periodic vibration experiments are performed on the digital vortex flowmeter products of Yokogawa and ABB. The anti-vibration performances of digital vortex flowmeters are studied and it is found that multiple frequency of pipe vibration is the main reason of their meter coefficient relative errors.展开更多
文摘为研究涡街流量计在管道周期振动情况下的抗振性能,对国内广泛应用的应力式模拟涡街流量计,在气体流量管道周期振动试验装置上进行了不同振动加速度和方向的试验.通过对振动产生仪表系数相对误差的研究,得出模拟涡街流量计的抗振加速度,并分析了此时涡街流量传感器输出信号的品质特征.最后,为与模拟涡街作比较,对横河和ABB公司生产的数字涡街流量计进行了相同的管道周期振动试验,研究了数字涡街的抗振性能,并发现振动倍频信号是导致仪表系数相对误差出现的主要原因.
Abstract:
To study the pipeline periodic vibration influence on the anti-vibration performance of vortex flowmeters,some experiments under different vibrating accelerations and directions have been carried out on the application-specific pipe periodic vibrating facility. The analog vortex flowmeter based on piezoelectric effect is tested firstly and its meter coefficient relative error caused by vibrations is investigated. Then the anti-vibrating acceleration is obtained and the signal quality of the vortex flow sensor is analyzed as well. Finally, in comparison with the analog vortex flowmeter, the same pipeline periodic vibration experiments are performed on the digital vortex flowmeter products of Yokogawa and ABB. The anti-vibration performances of digital vortex flowmeters are studied and it is found that multiple frequency of pipe vibration is the main reason of their meter coefficient relative errors.