期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于振幅熵和功率谱重心的转子振动故障诊断 被引量:5
1
作者 邵伟芹 刘晓波 +1 位作者 张明明 涂俊超 《中国工程机械学报》 北大核心 2017年第2期158-164,共7页
对信号进行特征提取是故障诊断的关键,为了提高转子振动故障诊断的准确性,根据转子振动的特点提出了基于振幅熵H(A)与功率谱重心C的转子振动故障诊断方法.通过计算功率谱的重心得到表征功率谱变化的功率谱重心特征,计算振幅的熵值得到... 对信号进行特征提取是故障诊断的关键,为了提高转子振动故障诊断的准确性,根据转子振动的特点提出了基于振幅熵H(A)与功率谱重心C的转子振动故障诊断方法.通过计算功率谱的重心得到表征功率谱变化的功率谱重心特征,计算振幅的熵值得到反映幅值分布特征与振动集中程度的振幅熵特征,组成二维特征量(H(A),C).然后通过转子故障模拟实验采集数据,对其进行DBSCAN聚类、K均值聚类、层次聚类、网格聚类4种聚类分析.结果表明,基于振幅熵H(A)与功率谱重心C的二维特征量(H(A),C)能够作为评价转子振动状态的综合特征指标.通过对传统的二维特征量(偏度、均方根值)、(裕度、标准差)运用网格聚类法进行转子振动故障诊断识别,结果表明,(H(A),C)的选取较于传统特征量的选取能更好地对转子运行中出现的常见故障进行区分. 展开更多
关键词 转子 聚类 振幅h(A) 功率谱重心C 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部