This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found th...This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.展开更多
In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for...In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.展开更多
The shear thinning and shear thickening rheological properties of PCC/PEG suspension were investigated with the increase of oscillatory amplitude stress at different constant frequencies. The results show that the com...The shear thinning and shear thickening rheological properties of PCC/PEG suspension were investigated with the increase of oscillatory amplitude stress at different constant frequencies. The results show that the complex viscosity was initially independent of stress amplitude and obvious shear thinning occurred, then dramatic shear thickening took place after reaching the minimum viscosity. Typically, in a constant frequency of 5 rad/s, the elastic modulus, viscous modulus, and tanδ (δ is the out-of-phase angle) vs. the stress amplitude was investigated. It is found that the elastic modulus initially appeared to be independent of stress amplitude and then exhibited a rapid decrease, but the viscous modulus was independent of amplitude stress at lower amplitude stress. After reaching the minimum value the viscous modulus showed a rapid increase. On the other hand, tanδ increased from 0.6 to 92, which indicates that the transition from elastic to viscous had taken place and tanδ showed a steep increase when shear thickening occurred. Lissajous plots are shown for the dissipated energy vs. different maximum stress amplitude in the shear thinning and shear thickening regions. The relationship of dissipated energy vs. maximum stress amplitude was determined, which follows a power law. In the shear thinning region the exponent was 1.91, but it steeply increases to 3.97 in the shear thickening region.展开更多
Purpose:The purpose of this study was to compare the effects of an 8-week whole-body vibration training program in various frequency and amplitude settings under the same acceleration on the strength and power of the ...Purpose:The purpose of this study was to compare the effects of an 8-week whole-body vibration training program in various frequency and amplitude settings under the same acceleration on the strength and power of the knee extensors.Methods:Sixty-four young participants were randomly assigned to 1 of 4 groups with the same acceleration(4 g):high frequency and low amplitude(n = 16,32 Hz,1 mm) group,medium frequency and medium amplitude(n = 16,18 Hz,3 mm) group,low frequency and high amplitude(n = 16,3 Hz,114 mm) group,and control(n = 16,no vibration) group.All participants underwent 8 weeks of training with body mass dynamic squats,3 sessions a week.Results:The results showed that the high frequency and low amplitude group increased significantly in isometric contraction strength and 120°/s isokinetic concentric contraction strength;the medium frequency and medium amplitude group increased significantly in 60°/s and 120°/s isokinetic strength of both concentric and eccentric contraction;and the low frequency and high amplitude group increased significantly in 60°/s and 120°/s isokinetic eccentric contraction strength.Conclusion:All frequency and amplitude settings in the 8-week whole-body vibration training increased muscle strength,but different settings resulted in various neuromuscular adaptations despite the same intensity.展开更多
According to the characteristic that Hilbert-Huang transform (HHT) can detect abnormity in signals, an HHT-based method to eliminate short-time strong disturbance was proposed. The signal with short-time strong dist...According to the characteristic that Hilbert-Huang transform (HHT) can detect abnormity in signals, an HHT-based method to eliminate short-time strong disturbance was proposed. The signal with short-time strong disturbance was decomposed into a series of intrinsic mode functions (IMFs) and a residue by the empirical mode decomposition (EMD). The instantaneous amplitudes and frequencies of each IMF were calculated. And at abnormal section, instantaneous amplitudes and frequencies were fired according to the data at normal section, replacing the fitted data for the original ones. A new set of IMFs was reconstructed by using the processed instantaneous amplitudes and frequencies. For the residue, abnormal fluctuations could be directly eliminated. And a new signal with the short-time strong disturbance eliminated was reconstructed by superposing all the new IMFs and the residue, The numerical simulation shows that there is a good correlation between the reconstructed signal and the undisturbed signal, The correlation coefficient is equal to 0.999 1. The processing results of the measured strain signal of a bridge with short-time strong disturbance verify the practicability of the method.展开更多
Achieving reliable underwater communication in shallow water acoustic channels is a difficult task because of the random time varying nature of multipath propagation, severe amplitude fluctuation, and spatial variabil...Achieving reliable underwater communication in shallow water acoustic channels is a difficult task because of the random time varying nature of multipath propagation, severe amplitude fluctuation, and spatial variability of the channel conditions. This paper describes a new signal processing technique frequency coding and decoding by means of real time measurement of signal width, jamming and suppressing multipath interference and using redundant coder. The application of the technique to the model ZTY 1 status monitor for underwater system of seabed is introduced in this paper. The main principle, the technique specifications and the key techniques of the system are discussed here. Theoretical estimations and experimental results proved that the performance of the system is excellent. The method can be used for some other related low data rate data transmission detecting in shallow water acoustic channel.展开更多
A model to describe the hysteresis damping characteristic of rubber material was presented.It consists of a parallel spring and damper,whose coefficients change with the vibration amplitude and frequency.In order to a...A model to describe the hysteresis damping characteristic of rubber material was presented.It consists of a parallel spring and damper,whose coefficients change with the vibration amplitude and frequency.In order to acquire these relations,force decomposition was carried out according to some sine vibration measurement data of nonlinear forces changing with the deformation of the rubber material.The nonlinear force is decomposed into a spring force and a damper force,which are represented by the amplitude-and frequency-dependent spring and damper coefficients,respectively.Repeating this step for different measurements gives different coefficients corresponding to different amplitudes and frequencies.Then,the application of a parameter identification method provides the requested approximation functions over amplitude and frequency.Using those formulae,as an example,the dynamic characteristic of a hollow shaft system supported by rubber rings was analyzed and the acceleration response curve in the centroid position was calculated.Comparisons with the sine vibration experiments of the real system show a maximal inaccuracy of 8.5%.Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.展开更多
This paper proposes a novel seismometer-type absolute displacement sensor aimed at detecting earthquake waves with a large magnitude and long period. However, since the measuring range of the displacement sensor is hi...This paper proposes a novel seismometer-type absolute displacement sensor aimed at detecting earthquake waves with a large magnitude and long period. However, since the measuring range of the displacement sensor is higher than its natural frequency, it is difficult to detect low frequency vibrations below 1 Hz using a conventional a seismic-type displacement sensor. In order to provide an absolute displacement detection which is capable of lowering the natural frequency and enlarging the detectable amplitude without causing structural defects, the relative signals of displacement, velocity, and acceleration between a detected object and the auxiliary mass of the sensor are fed back into the sensor. In addition, phase lag compensation is inserted to adjust phase angles, which are of a frequency of 1 Hz. According to simulation results, a detection range from 0.1 Hz to 50 Hz is expected. It has been demonstrated that the developed sensor with a small size and light weight has a detection range of from 0.5 Hz to 50 Hz for absolute displacement and velocity. As an additional advantage, the measurement displacement amplitude has been expanded to about 20 dB. This sensor is available to use for the active control method. of flexible structures like high rise buildings using the LQ control展开更多
The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration.We present a new method for boundary identification and quantitative thickness predi...The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration.We present a new method for boundary identification and quantitative thickness prediction of channel sand bodies based on seismic peak attributes in the frequency domain.Using seismic forward modeling of a typical thin channel sand body,a new seismic attribute-the ratio of peak frequency to amplitude was constructed.Theoretical study demonstrated that seismic peak frequency is sensitive to the thickness of the channel sand bodies,while the amplitude attribute is sensitive to the strata lithology.The ratio of the two attributes can highlight the boundaries of the channel sand body.Moreover,the thickness of the thin channel sand bodies can be determined using the relationship between seismic peak frequency and thin layer thickness.Practical applications have demonstrated that the seismic peak frequency attribute can depict the horizontal distribution characteristics of channels very well.The ratio of peak frequency to amplitude attribute can improve the identification ability of channel sand body boundaries.Quantitative prediction and boundary identification of channel sand bodies with seismic peak attributes in the frequency domain are feasible.展开更多
文摘This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.
基金The National Natural Science Foundation of China(No. 60974116 )the Research Fund of Aeronautics Science (No.20090869007)Specialized Research Fund for the Doctoral Program of Higher Education (No. 200902861063)
文摘In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.50774096 and No.50604017).
文摘The shear thinning and shear thickening rheological properties of PCC/PEG suspension were investigated with the increase of oscillatory amplitude stress at different constant frequencies. The results show that the complex viscosity was initially independent of stress amplitude and obvious shear thinning occurred, then dramatic shear thickening took place after reaching the minimum viscosity. Typically, in a constant frequency of 5 rad/s, the elastic modulus, viscous modulus, and tanδ (δ is the out-of-phase angle) vs. the stress amplitude was investigated. It is found that the elastic modulus initially appeared to be independent of stress amplitude and then exhibited a rapid decrease, but the viscous modulus was independent of amplitude stress at lower amplitude stress. After reaching the minimum value the viscous modulus showed a rapid increase. On the other hand, tanδ increased from 0.6 to 92, which indicates that the transition from elastic to viscous had taken place and tanδ showed a steep increase when shear thickening occurred. Lissajous plots are shown for the dissipated energy vs. different maximum stress amplitude in the shear thinning and shear thickening regions. The relationship of dissipated energy vs. maximum stress amplitude was determined, which follows a power law. In the shear thinning region the exponent was 1.91, but it steeply increases to 3.97 in the shear thickening region.
基金"Ministry" of Science and Technology,Taiwan,China(NSC 97-2622-B003-001-CC2)Tonic Fitness Technology Inc.(Magtonic,Taiwan,China) provided the funding and the customized vibration platform
文摘Purpose:The purpose of this study was to compare the effects of an 8-week whole-body vibration training program in various frequency and amplitude settings under the same acceleration on the strength and power of the knee extensors.Methods:Sixty-four young participants were randomly assigned to 1 of 4 groups with the same acceleration(4 g):high frequency and low amplitude(n = 16,32 Hz,1 mm) group,medium frequency and medium amplitude(n = 16,18 Hz,3 mm) group,low frequency and high amplitude(n = 16,3 Hz,114 mm) group,and control(n = 16,no vibration) group.All participants underwent 8 weeks of training with body mass dynamic squats,3 sessions a week.Results:The results showed that the high frequency and low amplitude group increased significantly in isometric contraction strength and 120°/s isokinetic concentric contraction strength;the medium frequency and medium amplitude group increased significantly in 60°/s and 120°/s isokinetic strength of both concentric and eccentric contraction;and the low frequency and high amplitude group increased significantly in 60°/s and 120°/s isokinetic eccentric contraction strength.Conclusion:All frequency and amplitude settings in the 8-week whole-body vibration training increased muscle strength,but different settings resulted in various neuromuscular adaptations despite the same intensity.
基金Project (50675230) supported by the National Natural Science Foundation of China
文摘According to the characteristic that Hilbert-Huang transform (HHT) can detect abnormity in signals, an HHT-based method to eliminate short-time strong disturbance was proposed. The signal with short-time strong disturbance was decomposed into a series of intrinsic mode functions (IMFs) and a residue by the empirical mode decomposition (EMD). The instantaneous amplitudes and frequencies of each IMF were calculated. And at abnormal section, instantaneous amplitudes and frequencies were fired according to the data at normal section, replacing the fitted data for the original ones. A new set of IMFs was reconstructed by using the processed instantaneous amplitudes and frequencies. For the residue, abnormal fluctuations could be directly eliminated. And a new signal with the short-time strong disturbance eliminated was reconstructed by superposing all the new IMFs and the residue, The numerical simulation shows that there is a good correlation between the reconstructed signal and the undisturbed signal, The correlation coefficient is equal to 0.999 1. The processing results of the measured strain signal of a bridge with short-time strong disturbance verify the practicability of the method.
文摘Achieving reliable underwater communication in shallow water acoustic channels is a difficult task because of the random time varying nature of multipath propagation, severe amplitude fluctuation, and spatial variability of the channel conditions. This paper describes a new signal processing technique frequency coding and decoding by means of real time measurement of signal width, jamming and suppressing multipath interference and using redundant coder. The application of the technique to the model ZTY 1 status monitor for underwater system of seabed is introduced in this paper. The main principle, the technique specifications and the key techniques of the system are discussed here. Theoretical estimations and experimental results proved that the performance of the system is excellent. The method can be used for some other related low data rate data transmission detecting in shallow water acoustic channel.
基金Project(50675042) supported by the National Natural Science Foundation of China
文摘A model to describe the hysteresis damping characteristic of rubber material was presented.It consists of a parallel spring and damper,whose coefficients change with the vibration amplitude and frequency.In order to acquire these relations,force decomposition was carried out according to some sine vibration measurement data of nonlinear forces changing with the deformation of the rubber material.The nonlinear force is decomposed into a spring force and a damper force,which are represented by the amplitude-and frequency-dependent spring and damper coefficients,respectively.Repeating this step for different measurements gives different coefficients corresponding to different amplitudes and frequencies.Then,the application of a parameter identification method provides the requested approximation functions over amplitude and frequency.Using those formulae,as an example,the dynamic characteristic of a hollow shaft system supported by rubber rings was analyzed and the acceleration response curve in the centroid position was calculated.Comparisons with the sine vibration experiments of the real system show a maximal inaccuracy of 8.5%.Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.
文摘This paper proposes a novel seismometer-type absolute displacement sensor aimed at detecting earthquake waves with a large magnitude and long period. However, since the measuring range of the displacement sensor is higher than its natural frequency, it is difficult to detect low frequency vibrations below 1 Hz using a conventional a seismic-type displacement sensor. In order to provide an absolute displacement detection which is capable of lowering the natural frequency and enlarging the detectable amplitude without causing structural defects, the relative signals of displacement, velocity, and acceleration between a detected object and the auxiliary mass of the sensor are fed back into the sensor. In addition, phase lag compensation is inserted to adjust phase angles, which are of a frequency of 1 Hz. According to simulation results, a detection range from 0.1 Hz to 50 Hz is expected. It has been demonstrated that the developed sensor with a small size and light weight has a detection range of from 0.5 Hz to 50 Hz for absolute displacement and velocity. As an additional advantage, the measurement displacement amplitude has been expanded to about 20 dB. This sensor is available to use for the active control method. of flexible structures like high rise buildings using the LQ control
基金supported by National Key Science and Technology Special Projects (Grant No.2008ZX05000-004)CNPC Key S and T Special Projects (Grant No.2008E-0610-10)
文摘The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration.We present a new method for boundary identification and quantitative thickness prediction of channel sand bodies based on seismic peak attributes in the frequency domain.Using seismic forward modeling of a typical thin channel sand body,a new seismic attribute-the ratio of peak frequency to amplitude was constructed.Theoretical study demonstrated that seismic peak frequency is sensitive to the thickness of the channel sand bodies,while the amplitude attribute is sensitive to the strata lithology.The ratio of the two attributes can highlight the boundaries of the channel sand body.Moreover,the thickness of the thin channel sand bodies can be determined using the relationship between seismic peak frequency and thin layer thickness.Practical applications have demonstrated that the seismic peak frequency attribute can depict the horizontal distribution characteristics of channels very well.The ratio of peak frequency to amplitude attribute can improve the identification ability of channel sand body boundaries.Quantitative prediction and boundary identification of channel sand bodies with seismic peak attributes in the frequency domain are feasible.