The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibratin...The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.展开更多
The effect of the correlation of two dichotomous noises on stochastic resonance is investigated for a linear stochastic system subject to a periodic oscillatory signal. It is found that, the correlation between the tw...The effect of the correlation of two dichotomous noises on stochastic resonance is investigated for a linear stochastic system subject to a periodic oscillatory signal. It is found that, the correlation between the two dichotomous noises can not only affect the appearance of the stochastic resonance phenomenon, but also the distinctness of the stochastic resonance phenomenon. There is an optimal value of the correlation, at which the stochastic resonance phenomenon is most distinct. In addition, the correlation between the two dichotomous noises can also cause the movement of the peak of stochastic resonance. Finally, two stochastic resonances caused by two correlated multiplicative dichotomous noises can be found in this system.展开更多
We introduce and analyze a multiscale finite element type method (MsFEM) in the vein of the classical Crouzeix-Raviart finite element method that is specifically adapted for highly oscillatory elliptic problems. We il...We introduce and analyze a multiscale finite element type method (MsFEM) in the vein of the classical Crouzeix-Raviart finite element method that is specifically adapted for highly oscillatory elliptic problems. We illustrate numerically the efficiency of the approach and compare it with several variants of MsFEM.展开更多
Synchronization of neurons plays an important role in vision, movement and memory. However, many neurological disorders such as epilepsies, Parkinson disease and essen- tial tremor are related to excessive synchroniza...Synchronization of neurons plays an important role in vision, movement and memory. However, many neurological disorders such as epilepsies, Parkinson disease and essen- tial tremor are related to excessive synchronization of neurons. In the line of therapy, stimulations to these pathologically synchronized neurons should be capable of breaking synchrony. As the first step of designing an effective stimulation, we consider desynchro- nization problem of coupled limit-cycle oscillators ensemble. First, the desynchronization problem is redefined in a nonlinear output regulation framework. Then, we design an output regulator (stimulation) which forces limit-cycle oscillators to track exogenous sinusoidal references with different phases. The proposed stimulation is robust against variations of oscillators' frequencies. Mathematical analysis and simulation results reveal the efficiency of the proposed technique.展开更多
基金Supported by the National Natural Science Foundation of China (No.60172001).
文摘The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.
基金Supported by Natural Science Foundation of China under Grant No. 10975079the Natural Science Foundation of Ningbo under Grant No. 2008A61003 K.C. Wong Magna Fund in Ningbo University of China
文摘The effect of the correlation of two dichotomous noises on stochastic resonance is investigated for a linear stochastic system subject to a periodic oscillatory signal. It is found that, the correlation between the two dichotomous noises can not only affect the appearance of the stochastic resonance phenomenon, but also the distinctness of the stochastic resonance phenomenon. There is an optimal value of the correlation, at which the stochastic resonance phenomenon is most distinct. In addition, the correlation between the two dichotomous noises can also cause the movement of the peak of stochastic resonance. Finally, two stochastic resonances caused by two correlated multiplicative dichotomous noises can be found in this system.
基金supported by ONR under Grant (No. N00014-12-1-0383)EOARD under Grant (No. FA8655-10-C-4002)
文摘We introduce and analyze a multiscale finite element type method (MsFEM) in the vein of the classical Crouzeix-Raviart finite element method that is specifically adapted for highly oscillatory elliptic problems. We illustrate numerically the efficiency of the approach and compare it with several variants of MsFEM.
文摘Synchronization of neurons plays an important role in vision, movement and memory. However, many neurological disorders such as epilepsies, Parkinson disease and essen- tial tremor are related to excessive synchronization of neurons. In the line of therapy, stimulations to these pathologically synchronized neurons should be capable of breaking synchrony. As the first step of designing an effective stimulation, we consider desynchro- nization problem of coupled limit-cycle oscillators ensemble. First, the desynchronization problem is redefined in a nonlinear output regulation framework. Then, we design an output regulator (stimulation) which forces limit-cycle oscillators to track exogenous sinusoidal references with different phases. The proposed stimulation is robust against variations of oscillators' frequencies. Mathematical analysis and simulation results reveal the efficiency of the proposed technique.