The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated. We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m×m microscopic lattice sites are group...The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated. We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m×m microscopic lattice sites are grouped together to form a CG cell, upon which CG processes take place with well-defined CG rates. Such a CG approach almost fails if the CG rates are obtained by a simple local mean field (s-LMF) approximation, due to the ignorance of correlation among adjcent cells resulting fl'om the trimolecular reaction in this nonlinear system. By proper incorporating such boundary effects, thus introduce the so-cMled b-LMF CG approach. Extensive numerical simulations demonstrate that the b-LMF method can reproduce the oscillation behavior of the system quite well, given that the diffusion constant is not too small. In addition, the deviation from the KMC results reaches a nearly zero minimum level at an intermediate cell size, which lies in between the effective diffusion length and the minimal size required to sustain a well-defined temporal oscillation.展开更多
We have studied the nucleation process of a two-dimensional kinetic Ising model subject to a bias oscillating external field, focusing on how the nucleation time depends on the oscillation frequency. It is found that ...We have studied the nucleation process of a two-dimensional kinetic Ising model subject to a bias oscillating external field, focusing on how the nucleation time depends on the oscillation frequency. It is found that the nucleation time shows a clear-cut minimum with the variation of oscillation frequency, wherein the average size of the critical nuclei is the smallest, indicating that an oscillating external field with an optimal frequency can be much more favorable to the nucleation process than a constant field. We have also investigated the effect of the initial phase of the external field, which helps to illustrate the occurrence of such an interesting finding.展开更多
The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside th...The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside the OHP with different filling ratios of 40%, 60% and 80% of total inside volume. Experimental results show that the thermal characteristics are significantly inter-related with pressure fluctuations as well as pressure frequency. And the pressure frequency also depends upon the evaporator temperature that is maintained in the range of 60-96 ℃. Piezoresistive absolute pressure sensor (Model-Kistler 4045A5) was used to take data. The investigation shows that the filling ratio of 60% gives the highest inside pressure magnitude at maximum number of pressure frequency at any of set evaporator temperature and the lowest heat flow resistance is achieved at 60% filling ratio.展开更多
Background:Stiffness is commonly assessed in relation to injury and athletic performance.The purpose of this research was to compare the validity and reliability of 3 in vivo methods of stiffness assessment using 1 c...Background:Stiffness is commonly assessed in relation to injury and athletic performance.The purpose of this research was to compare the validity and reliability of 3 in vivo methods of stiffness assessment using 1 cohort of participants.Methods:To determine inter-day reliability,15 female netballers were assessed for stiffness twice within 1 week using unilateral hopping(vertical stiffness),free oscillations of the calf,and myometry of various muscles of the triceps surae.To establish convergent construct validity,stiffness was compared to static and dynamic strength measurements.Results:Test–retest stiffness results revealed that vertical stiffness produced moderate to high reliability results and myometry presented moderate to very high reliability.In contrast,the free oscillation technique displayed low to moderate reliability.Vertical stiffness demonstrated a significa t correlation with rate of force development during a squat jump,whilst myometer stiffness measurements from 3 sites in the lower limb revealed significan correlations with isometric rate of force development.Further,significan negative correlations were evident between the eccentric utilisation ratio and various myometer stiffness results.No relationships were established between the free oscillation technique and any of the performance measurements.Conclusion:These results suggest that vertical stiffness and myometry are valid and reliable methods for assessing stiffness.展开更多
The quasi-biennial oscillation(QBO),a dominant mode of the equatorial stratospheric(~100–1 hPa)variability,is known to impact tropospheric circulation in the middle and high latitudes.Yet,its realistic simulation in ...The quasi-biennial oscillation(QBO),a dominant mode of the equatorial stratospheric(~100–1 hPa)variability,is known to impact tropospheric circulation in the middle and high latitudes.Yet,its realistic simulation in general circulation models remains a challenge.The authors examine the simulated QBO in the 69-layer version of the Institute of Atmospheric Physics Atmospheric General Circulation Model(IAP-AGCML69)and analyze its momentum budget.The authors find that the QBO is primarily caused by parameterized gravity-wave forcing due to tropospheric convection,but the downward propagation of the momentum source is significantly offset by the upward advection of zonal wind by the equatorial upwelling in the stratosphere.Resolved-scale waves act as a positive contribution to the total zonal wind tendency of the QBO over the equator with comparable magnitude to the gravity-wave forcing in the upper stratosphere.Results provide insights into the mechanism of the QBO and possible causes of differences in models.展开更多
The aim of this study was to understand the cause of Madden–Julian oscillation(MJO)bias in the High Resolution AtmosphericModel(HiRAM)driven by observed SST through process-oriented diagnosis.Wavenumber-frequency pow...The aim of this study was to understand the cause of Madden–Julian oscillation(MJO)bias in the High Resolution AtmosphericModel(HiRAM)driven by observed SST through process-oriented diagnosis.Wavenumber-frequency power spectrum and composite analyses indicate that HiRAM underestimates the spectral amplitude over theMJO band and mainly produces non-propagating rather than eastward-propagating intraseasonal rainfall anomalies,as observed.Column-integrated moist static energy(MSE)budget analysis is conducted to understand the MJO propagation bias in the simulation.It is found that the bias is due to the lack of a zonally asymmetric distribution of the MSE tendency anomaly in respect to the MJO convective center,which is mainly attributable to the bias in vertical MSE advection and surface turbulent flux.Further analysis suggests that it is the unrealistic simulation of MJO vertical circulation anomalies in the upper troposphere as well as overestimation of the Rossby wave response that results in the bias.展开更多
The effects of gravitomagnetic force on plasma oscillations are investigated using the kinetic theory of homogeneous electrically neutral plasma in the absence of external electric or magnetic field. The random phase ...The effects of gravitomagnetic force on plasma oscillations are investigated using the kinetic theory of homogeneous electrically neutral plasma in the absence of external electric or magnetic field. The random phase assumption is employed neglecting the thermal motion of the electrons with respect to a fixed ion background. It is found that the gravitomagnetic force reduces the characteristic frequency of the plasma thus enhancing the refractive index of the medium. The estimates for the predicted effects are given for a typical white dwarf, pulsar, and neutron star.展开更多
A single machine-infinite-bus(SMIB) system including the interline power flow controllers(IPFCs) and the power system stabilizer(PSS) controller is addressed. The linearized system model is considered for investigatin...A single machine-infinite-bus(SMIB) system including the interline power flow controllers(IPFCs) and the power system stabilizer(PSS) controller is addressed. The linearized system model is considered for investigating the interactions among IPFC and PSS controllers. To improve the stability of whole system again different disturbances, a lead-lag controller is considered to produce supplementary signal. The proposed supplementary controller is implemented to improve the damping of the power system low frequency oscillations(LFOs). Imperialist optimization algorithm(ICA) and shuffled frog leaping algorithm(SFLA) are implemented to search for optimal supplementary controllers and PSS parameters. Moreover, singular value decomposition(SVD) method is utilized to select the most effective damping control signal of IPFC lead-lag controllers. To evaluate the system performance, different operating conditions are considered. Reponses of system in five modes including uncoordinated and coordinated modes of IPFC and PSS using ICA and SFLA are studied and compared. Considering the results, response of system without controller shows the highest overshoot and the longest settling time for rotor angel at the different operating conditions. In this mode of system, rotor speed has the highest overshoot. Rotor angel in the system with only PSS includes lower overshoot and oscillation than system without controller. When PSS is only implemented, rotor speed deviation has the longest settling time. Rotor speed deviation in the uncoordinated mode of IPFC and PSS shows lower overshoot than system with only PSS and without controller. It is noticeable that in this mode, rotor angel has higher overshoot than system with only PSS. The superiority of the suggested ICA-based coordinated controllers is obvious compared with SFLA-based coordinated controllers and other system modes. Responses of coordinated PSS and IPFC SFLA-based supplementary controllers include higher peak amplitude and longer settling time compared with coordinated IPFC and PSS ICA-based controllers. This comparison shows that overshoots, undershoots and the settling times are reduced considerably in coordinated mode of IPFC based controller and PSS using ICA. Analysis of the system performance shows that the proposed method has excellent response to different faults in power system.展开更多
The heat distributions in the upper layers of the ocean have been studied and some important low frequency oscillations (LFOs) are already found and quantified by using various characteristic factors. In this paper,...The heat distributions in the upper layers of the ocean have been studied and some important low frequency oscillations (LFOs) are already found and quantified by using various characteristic factors. In this paper, the ‘heat center' of a sea area is defined with a simple method. Then the temperature data set of the upper layer of the global ocean (from surface down to 400 m, 1955-2003) is analyzed to detect the possible LFOs. Not only some zonal LFOs, which were reported early, but also some strong LFOs of the vertical and meridional heat distribution, which might imply some physical sense, are detected. It should be noted that the similar vertical oscillation pattern can be found in the Pacific Ocean, Atlantic Ocean and Indian Ocean. Results from some preliminary studies show that the vertical LFO might be caused by the solar irradiance anomalies. This study may help reveal some unknown dynamical processes in the global oceans and may also benefit other related studies.展开更多
This paper deals mainly with the dynamic response of a rigid disc bonded to the surface of a layered poroelastic half-space. The disc is subjected to time-harmonic torsional moment loadings. The half space under consi...This paper deals mainly with the dynamic response of a rigid disc bonded to the surface of a layered poroelastic half-space. The disc is subjected to time-harmonic torsional moment loadings. The half space under consideration consists of a number of layers with different thickness and material properties. Hankel transform techniques and transferring matrix method are used to solve the governing equations. The continuity of the displacement and stress fields between different layers enabled derivation of closed-form solutions in the transform domain. On the assumption that the contact between the disc and the half space is perfectly bonded, this dynamic mixed boundary-value problem can be reduced to dual integral equations, which are further reduced to Fredholm integral equations of the second kind and solved by numerical procedures. Selected numerical results for the dynamic impedance and displacement amplitude of the disc resting on different saturated models are presented to show the influence of the material and geometrical properties of both the saturated soil-foundation system and the nature of the load acting on it. The conclusions obtained can serve as guidelines for practical engineering.展开更多
Almost all works in the field of boundary layer flow under the breaking wave consider the flow similar as the flow in an oscillating pressure tube. Although the two flows are similar, there are many differences. The r...Almost all works in the field of boundary layer flow under the breaking wave consider the flow similar as the flow in an oscillating pressure tube. Although the two flows are similar, there are many differences. The results achieved in such manner are therefore also only similar to the results that can be achieved during measurements in the surf zone. Present article deals with boundary layer measurements on an inclined bottom under breaking waves. The measurements over the whole wave cycle were carried out, and the shear velocity under the breaking wave was calculated based on the measurements. It was found that there is a considerable space and time variation of the term in the surf zone. The turbulence generated during the wave breaking changes the shape of the shear velocity profile in comparison to the profile measured before breaking. As the values of shear velocity are directly correlated with the description of the whole velocity field in the wave, it can be assumed that the enhanced description of the shear velocity results in better understanding of the whole velocity field under breaking waves. Therefore, the article brings a new insight into the field and aims to make a discussion about the need to rethink the way of describing the boundary layer flow in the surf zone.展开更多
To determine the motion of a charged particle in a magnetic field produced by a current flowing along a long column conductor,the equation of the motion was established on the basis of Lorentz force. Qualitative analy...To determine the motion of a charged particle in a magnetic field produced by a current flowing along a long column conductor,the equation of the motion was established on the basis of Lorentz force. Qualitative analysis and quantitative solutions demonstrated that the motion contains nonlinear oscillation. The oscillation can be treated as the perturbation of the helical motion,which the particle undergoes in a special condition. The general motion is superposition of two helixes,one as an axis spiraled by another. It is proven that the oscillation is stable.展开更多
In this paper,we investigate the categorical description of the boson oscillator.Based on the categories constructed by Khovanov,we introduce a categorification of the Fock states and the corresponding inner product o...In this paper,we investigate the categorical description of the boson oscillator.Based on the categories constructed by Khovanov,we introduce a categorification of the Fock states and the corresponding inner product of these states.We find that there are two different categorical definitions of the inner product of the Fock states.These two definitions are consistent with each other,and the decategorification results also coincide with those in conventional quantum mechanics.We also find that there are some interesting properties of the 2-morphisms which relate to the inner product of the states.展开更多
In order to explain the oscillation heat transfer dynamics of closed loop oscillation heat pipe (CLOHP) with two liquid slugs,analysis on the forces and heat transfer process of the partial gas-liquid phase system inv...In order to explain the oscillation heat transfer dynamics of closed loop oscillation heat pipe (CLOHP) with two liquid slugs,analysis on the forces and heat transfer process of the partial gas-liquid phase system involving multiple parameters was carried out,and a new type oscillation heat transfer dynamic model of the CLOHP was set up based on conservation laws of mass,momentum and energy.Application results indicate that its oscillation heat transfer dynamics features depend largely on the filling rate,pipe diameter and difference in temperature.Besides,oscillation intensity and transfer performance can be improved to a large extent by increasing the temperature difference properly and enlarging the pipe diameter within a certain range under a certain filling rate.展开更多
文摘The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated. We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m×m microscopic lattice sites are grouped together to form a CG cell, upon which CG processes take place with well-defined CG rates. Such a CG approach almost fails if the CG rates are obtained by a simple local mean field (s-LMF) approximation, due to the ignorance of correlation among adjcent cells resulting fl'om the trimolecular reaction in this nonlinear system. By proper incorporating such boundary effects, thus introduce the so-cMled b-LMF CG approach. Extensive numerical simulations demonstrate that the b-LMF method can reproduce the oscillation behavior of the system quite well, given that the diffusion constant is not too small. In addition, the deviation from the KMC results reaches a nearly zero minimum level at an intermediate cell size, which lies in between the effective diffusion length and the minimal size required to sustain a well-defined temporal oscillation.
基金V. ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.21125313, No.20933006,and No.91027012)
文摘We have studied the nucleation process of a two-dimensional kinetic Ising model subject to a bias oscillating external field, focusing on how the nucleation time depends on the oscillation frequency. It is found that the nucleation time shows a clear-cut minimum with the variation of oscillation frequency, wherein the average size of the critical nuclei is the smallest, indicating that an oscillating external field with an optimal frequency can be much more favorable to the nucleation process than a constant field. We have also investigated the effect of the initial phase of the external field, which helps to illustrate the occurrence of such an interesting finding.
基金Project(2011-0009022) supported by Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘The pressure characteristics inside single loop oscillating heat pipe (OHP) having 4.5 mm inner diameter copper tube with the loop height of 440 mm were addressed. Distilled water was used as working fluid inside the OHP with different filling ratios of 40%, 60% and 80% of total inside volume. Experimental results show that the thermal characteristics are significantly inter-related with pressure fluctuations as well as pressure frequency. And the pressure frequency also depends upon the evaporator temperature that is maintained in the range of 60-96 ℃. Piezoresistive absolute pressure sensor (Model-Kistler 4045A5) was used to take data. The investigation shows that the filling ratio of 60% gives the highest inside pressure magnitude at maximum number of pressure frequency at any of set evaporator temperature and the lowest heat flow resistance is achieved at 60% filling ratio.
文摘Background:Stiffness is commonly assessed in relation to injury and athletic performance.The purpose of this research was to compare the validity and reliability of 3 in vivo methods of stiffness assessment using 1 cohort of participants.Methods:To determine inter-day reliability,15 female netballers were assessed for stiffness twice within 1 week using unilateral hopping(vertical stiffness),free oscillations of the calf,and myometry of various muscles of the triceps surae.To establish convergent construct validity,stiffness was compared to static and dynamic strength measurements.Results:Test–retest stiffness results revealed that vertical stiffness produced moderate to high reliability results and myometry presented moderate to very high reliability.In contrast,the free oscillation technique displayed low to moderate reliability.Vertical stiffness demonstrated a significa t correlation with rate of force development during a squat jump,whilst myometer stiffness measurements from 3 sites in the lower limb revealed significan correlations with isometric rate of force development.Further,significan negative correlations were evident between the eccentric utilisation ratio and various myometer stiffness results.No relationships were established between the free oscillation technique and any of the performance measurements.Conclusion:These results suggest that vertical stiffness and myometry are valid and reliable methods for assessing stiffness.
基金This research was supported by the National Major Research High Performance Computing Program of China[grant number 2016YFB0200800]the National Natural Science Foundation of China[grant numbers 41630530 and 41706036]the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘The quasi-biennial oscillation(QBO),a dominant mode of the equatorial stratospheric(~100–1 hPa)variability,is known to impact tropospheric circulation in the middle and high latitudes.Yet,its realistic simulation in general circulation models remains a challenge.The authors examine the simulated QBO in the 69-layer version of the Institute of Atmospheric Physics Atmospheric General Circulation Model(IAP-AGCML69)and analyze its momentum budget.The authors find that the QBO is primarily caused by parameterized gravity-wave forcing due to tropospheric convection,but the downward propagation of the momentum source is significantly offset by the upward advection of zonal wind by the equatorial upwelling in the stratosphere.Resolved-scale waves act as a positive contribution to the total zonal wind tendency of the QBO over the equator with comparable magnitude to the gravity-wave forcing in the upper stratosphere.Results provide insights into the mechanism of the QBO and possible causes of differences in models.
基金This work was supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disaster[Grant No.2019YFC1510004]the National Natural Science Foundation of China[Grant Nos.41975108 and 42105022]+2 种基金NOAA[Grant No.NA18OAR4310298]the Natural Science Foundation of Jiangsu[Grant No.BK20190781]the National Natural Science Foundation of China–Shandong Joint Fund for Marine Science Research Centers[Grant No.U1606405].
文摘The aim of this study was to understand the cause of Madden–Julian oscillation(MJO)bias in the High Resolution AtmosphericModel(HiRAM)driven by observed SST through process-oriented diagnosis.Wavenumber-frequency power spectrum and composite analyses indicate that HiRAM underestimates the spectral amplitude over theMJO band and mainly produces non-propagating rather than eastward-propagating intraseasonal rainfall anomalies,as observed.Column-integrated moist static energy(MSE)budget analysis is conducted to understand the MJO propagation bias in the simulation.It is found that the bias is due to the lack of a zonally asymmetric distribution of the MSE tendency anomaly in respect to the MJO convective center,which is mainly attributable to the bias in vertical MSE advection and surface turbulent flux.Further analysis suggests that it is the unrealistic simulation of MJO vertical circulation anomalies in the upper troposphere as well as overestimation of the Rossby wave response that results in the bias.
文摘The effects of gravitomagnetic force on plasma oscillations are investigated using the kinetic theory of homogeneous electrically neutral plasma in the absence of external electric or magnetic field. The random phase assumption is employed neglecting the thermal motion of the electrons with respect to a fixed ion background. It is found that the gravitomagnetic force reduces the characteristic frequency of the plasma thus enhancing the refractive index of the medium. The estimates for the predicted effects are given for a typical white dwarf, pulsar, and neutron star.
文摘A single machine-infinite-bus(SMIB) system including the interline power flow controllers(IPFCs) and the power system stabilizer(PSS) controller is addressed. The linearized system model is considered for investigating the interactions among IPFC and PSS controllers. To improve the stability of whole system again different disturbances, a lead-lag controller is considered to produce supplementary signal. The proposed supplementary controller is implemented to improve the damping of the power system low frequency oscillations(LFOs). Imperialist optimization algorithm(ICA) and shuffled frog leaping algorithm(SFLA) are implemented to search for optimal supplementary controllers and PSS parameters. Moreover, singular value decomposition(SVD) method is utilized to select the most effective damping control signal of IPFC lead-lag controllers. To evaluate the system performance, different operating conditions are considered. Reponses of system in five modes including uncoordinated and coordinated modes of IPFC and PSS using ICA and SFLA are studied and compared. Considering the results, response of system without controller shows the highest overshoot and the longest settling time for rotor angel at the different operating conditions. In this mode of system, rotor speed has the highest overshoot. Rotor angel in the system with only PSS includes lower overshoot and oscillation than system without controller. When PSS is only implemented, rotor speed deviation has the longest settling time. Rotor speed deviation in the uncoordinated mode of IPFC and PSS shows lower overshoot than system with only PSS and without controller. It is noticeable that in this mode, rotor angel has higher overshoot than system with only PSS. The superiority of the suggested ICA-based coordinated controllers is obvious compared with SFLA-based coordinated controllers and other system modes. Responses of coordinated PSS and IPFC SFLA-based supplementary controllers include higher peak amplitude and longer settling time compared with coordinated IPFC and PSS ICA-based controllers. This comparison shows that overshoots, undershoots and the settling times are reduced considerably in coordinated mode of IPFC based controller and PSS using ICA. Analysis of the system performance shows that the proposed method has excellent response to different faults in power system.
文摘The heat distributions in the upper layers of the ocean have been studied and some important low frequency oscillations (LFOs) are already found and quantified by using various characteristic factors. In this paper, the ‘heat center' of a sea area is defined with a simple method. Then the temperature data set of the upper layer of the global ocean (from surface down to 400 m, 1955-2003) is analyzed to detect the possible LFOs. Not only some zonal LFOs, which were reported early, but also some strong LFOs of the vertical and meridional heat distribution, which might imply some physical sense, are detected. It should be noted that the similar vertical oscillation pattern can be found in the Pacific Ocean, Atlantic Ocean and Indian Ocean. Results from some preliminary studies show that the vertical LFO might be caused by the solar irradiance anomalies. This study may help reveal some unknown dynamical processes in the global oceans and may also benefit other related studies.
基金Project (No. 50079027) supported by the National Natural ScienceFoundation of China
文摘This paper deals mainly with the dynamic response of a rigid disc bonded to the surface of a layered poroelastic half-space. The disc is subjected to time-harmonic torsional moment loadings. The half space under consideration consists of a number of layers with different thickness and material properties. Hankel transform techniques and transferring matrix method are used to solve the governing equations. The continuity of the displacement and stress fields between different layers enabled derivation of closed-form solutions in the transform domain. On the assumption that the contact between the disc and the half space is perfectly bonded, this dynamic mixed boundary-value problem can be reduced to dual integral equations, which are further reduced to Fredholm integral equations of the second kind and solved by numerical procedures. Selected numerical results for the dynamic impedance and displacement amplitude of the disc resting on different saturated models are presented to show the influence of the material and geometrical properties of both the saturated soil-foundation system and the nature of the load acting on it. The conclusions obtained can serve as guidelines for practical engineering.
文摘Almost all works in the field of boundary layer flow under the breaking wave consider the flow similar as the flow in an oscillating pressure tube. Although the two flows are similar, there are many differences. The results achieved in such manner are therefore also only similar to the results that can be achieved during measurements in the surf zone. Present article deals with boundary layer measurements on an inclined bottom under breaking waves. The measurements over the whole wave cycle were carried out, and the shear velocity under the breaking wave was calculated based on the measurements. It was found that there is a considerable space and time variation of the term in the surf zone. The turbulence generated during the wave breaking changes the shape of the shear velocity profile in comparison to the profile measured before breaking. As the values of shear velocity are directly correlated with the description of the whole velocity field in the wave, it can be assumed that the enhanced description of the shear velocity results in better understanding of the whole velocity field under breaking waves. Therefore, the article brings a new insight into the field and aims to make a discussion about the need to rethink the way of describing the boundary layer flow in the surf zone.
基金the key scientific research project of Sichuan Education Department(No.06A108).
文摘To determine the motion of a charged particle in a magnetic field produced by a current flowing along a long column conductor,the equation of the motion was established on the basis of Lorentz force. Qualitative analysis and quantitative solutions demonstrated that the motion contains nonlinear oscillation. The oscillation can be treated as the perturbation of the helical motion,which the particle undergoes in a special condition. The general motion is superposition of two helixes,one as an axis spiraled by another. It is proven that the oscillation is stable.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10975102,10871135,11031005,11075014
文摘In this paper,we investigate the categorical description of the boson oscillator.Based on the categories constructed by Khovanov,we introduce a categorification of the Fock states and the corresponding inner product of these states.We find that there are two different categorical definitions of the inner product of the Fock states.These two definitions are consistent with each other,and the decategorification results also coincide with those in conventional quantum mechanics.We also find that there are some interesting properties of the 2-morphisms which relate to the inner product of the states.
基金Project(531107040300)supported by the Fundamental Research Funds for the Central Universities in ChinaProject(51176045)supported by the National Natural Science Foundation of China
文摘In order to explain the oscillation heat transfer dynamics of closed loop oscillation heat pipe (CLOHP) with two liquid slugs,analysis on the forces and heat transfer process of the partial gas-liquid phase system involving multiple parameters was carried out,and a new type oscillation heat transfer dynamic model of the CLOHP was set up based on conservation laws of mass,momentum and energy.Application results indicate that its oscillation heat transfer dynamics features depend largely on the filling rate,pipe diameter and difference in temperature.Besides,oscillation intensity and transfer performance can be improved to a large extent by increasing the temperature difference properly and enlarging the pipe diameter within a certain range under a certain filling rate.