A sensor array system formed by arranging four asymmetric distributed-feedback fiber lasers (DFB-FL) in ascending order according to their slope efficiencies was proposed. The output flatness could be effectively im...A sensor array system formed by arranging four asymmetric distributed-feedback fiber lasers (DFB-FL) in ascending order according to their slope efficiencies was proposed. The output flatness could be effectively improved with the application of asymmetric DFB-FLs. The last element had almost the same output with the others although it obtained the smallest pump power. The relative intensity noise (RIN) and relaxation oscillation frequency of the sensor array were also analyzed. It is found that the relaxation oscillation frequency of a certain DFB-FL was relevant to its relative position in the array. And the RIN of a certain DFB-FL was always affected by the other elements in the array, which was not dependent on the order of their arrangement.展开更多
文摘A sensor array system formed by arranging four asymmetric distributed-feedback fiber lasers (DFB-FL) in ascending order according to their slope efficiencies was proposed. The output flatness could be effectively improved with the application of asymmetric DFB-FLs. The last element had almost the same output with the others although it obtained the smallest pump power. The relative intensity noise (RIN) and relaxation oscillation frequency of the sensor array were also analyzed. It is found that the relaxation oscillation frequency of a certain DFB-FL was relevant to its relative position in the array. And the RIN of a certain DFB-FL was always affected by the other elements in the array, which was not dependent on the order of their arrangement.