Damped oscillation of Newtonian liquid in a vertical U-tube is one of the well known phenomena and the solution of this liquid motion for the laminar flow regime in the circular pipe was solved, however, generally spe...Damped oscillation of Newtonian liquid in a vertical U-tube is one of the well known phenomena and the solution of this liquid motion for the laminar flow regime in the circular pipe was solved, however, generally speaking, even if the period of the oscillational motion by this solution is nearly coincided with that of the experimental result, the estimation of the damped oscillational process with lapse of time by the solved equation is not in agreement with that of the experimental result. Therefore basing upon the experimental results of the velocity distributions of the oscillational motion in the circular U-tube for the Newtonian and non-Newtonian liquids, the velocity distribution of the Bingham plastic flow is assumed. The solutions of the damped oscillation and also of the vertical falling and rising velocities of the free surface in the vertical U-tube of the diameters D= 10mm, 20mm and 40mm are compared with water and water-glycerine solution for the Newtonian liquids and the acrylic co-polymer solutions for the non-Newtorlian liquid. The comparisons of these solved equations by the new flow model are shown in good agreement with the experimental results. The above stated results are described in detail.展开更多
Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonst...Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonstrated.The objectives of this study are to systematically explore the effects of the material damping on flag flutter,and then to study the energy interchange between the fluid and the flag.In this study,a two-dimensional model was developed.Three dimensionless parameters govern the system,i.e.the mass ratio between the structure and the fluid,the dimensionless fluid velocity and the dimensionless material damping.Results show that the critical velocity increases with the increase of the material damping.The oscillation frequency of the flag decreases with the increase of the material damping,and the time-averaged energy dissipation rate initially increases and then decreases.The increase of the material damping causes the transition of the system from a higher frequency oscillating state to a lower frequency oscillating state,and from a chaotic state to a periodic state.展开更多
文摘Damped oscillation of Newtonian liquid in a vertical U-tube is one of the well known phenomena and the solution of this liquid motion for the laminar flow regime in the circular pipe was solved, however, generally speaking, even if the period of the oscillational motion by this solution is nearly coincided with that of the experimental result, the estimation of the damped oscillational process with lapse of time by the solved equation is not in agreement with that of the experimental result. Therefore basing upon the experimental results of the velocity distributions of the oscillational motion in the circular U-tube for the Newtonian and non-Newtonian liquids, the velocity distribution of the Bingham plastic flow is assumed. The solutions of the damped oscillation and also of the vertical falling and rising velocities of the free surface in the vertical U-tube of the diameters D= 10mm, 20mm and 40mm are compared with water and water-glycerine solution for the Newtonian liquids and the acrylic co-polymer solutions for the non-Newtorlian liquid. The comparisons of these solved equations by the new flow model are shown in good agreement with the experimental results. The above stated results are described in detail.
基金supported by the National Natural Science Foundation of China(Grant Nos.10832010,11002138 and 11102027)the Innovation Project of CAS(Grant No.KJCX2-YW-L05)
文摘Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonstrated.The objectives of this study are to systematically explore the effects of the material damping on flag flutter,and then to study the energy interchange between the fluid and the flag.In this study,a two-dimensional model was developed.Three dimensionless parameters govern the system,i.e.the mass ratio between the structure and the fluid,the dimensionless fluid velocity and the dimensionless material damping.Results show that the critical velocity increases with the increase of the material damping.The oscillation frequency of the flag decreases with the increase of the material damping,and the time-averaged energy dissipation rate initially increases and then decreases.The increase of the material damping causes the transition of the system from a higher frequency oscillating state to a lower frequency oscillating state,and from a chaotic state to a periodic state.