Synchronization in coupled oscillator networks has attracted much attention from many fields of science and engineering. In this paper, it is firstly proved that the oscifiator network with nonlinear coupling is also ...Synchronization in coupled oscillator networks has attracted much attention from many fields of science and engineering. In this paper, it is firstly proved that the oscifiator network with nonlinear coupling is also eventually dissipative under the hypothesis of eventual dissipation of the uncoupled oscillators. And the dynamics of the network is analyzed in its absorbing domain by combining two methods developed recently. Suufficient conditions for synchronization in the oscillator networks with nonlinear coupling are obtained. The two methods are combined effectively and the results embody the respective merits of the two methods. Numerical simulations confirm the validity of the results.展开更多
Evolutionary response analysis of Duffing oscillator using Gaussian equivalent linearization in wavelet based time-frequency frame work is presented here. Cubic (i.e., odd type) non-linearity associated with stiffne...Evolutionary response analysis of Duffing oscillator using Gaussian equivalent linearization in wavelet based time-frequency frame work is presented here. Cubic (i.e., odd type) non-linearity associated with stiffness and damping is modeled. The goal of this research is to develop the mathematical model of an equivalent linear system which is applicable for different non-stationary input processes (i.e., either summation of amplitude modulated stationary orthogonal processes or digitally simulated non-stationary processes). The instantaneous parameters of the ELTVS (equivalent linear time varying system) are evaluated by minimizing the error between the displacements of non-linear and equivalent linear systems in wavelet domain. For this purpose, three different basis functions (i.e., Mexican Hat, Morlet and a modified form of Littlewood-Paley) are used. The unknown parameters (i.e., natural frequency and damping) of the ELTVS are optimized in stochastic least square sense. Numerical results are presented for different types of input to show the applicability and accuracy of the proposed wavelet based linearization technique.展开更多
The nonlinear aeroelastic system of an airfoil with an external store was investigated,with emphasis on the bounds of limit cycle oscillations(LCOs).Based on the equivalent linearization,an approach was proposed to ca...The nonlinear aeroelastic system of an airfoil with an external store was investigated,with emphasis on the bounds of limit cycle oscillations(LCOs).Based on the equivalent linearization,an approach was proposed to calculate the bounds on LCOs over the full flight envelope.The bounds are determined directly without solving LCOs one by one as the flow speed varies.The presented approach can provide us with the maximal LCO amplitudes and the lower threshold for flow speed beyond which LCOs may arise.Numerical examples show that the obtained bounds are in nice agreement with numerical simulation results.The speed threshold can be predicted to a relative error less than 0.1%,and the maximal LCO amplitude to about 3%.The influences of the system parameters on the speed threshold for speed were investigated efficiently by the proposed approach.展开更多
Model uncertainty directly affects the accuracy of robust flutter and limit-cycle-oscillation (LCO) analysis. Using a data-based method, the bounds of an uncertain block-oriented aeroelastic system with nonlinearity a...Model uncertainty directly affects the accuracy of robust flutter and limit-cycle-oscillation (LCO) analysis. Using a data-based method, the bounds of an uncertain block-oriented aeroelastic system with nonlinearity are obtained in the time domain. Then robust LCO analysis of the identified model set is performed. First, the proper orthonormal basis is constructed based on the on-line dynamic poles of the aeroelastic system. Accordingly, the identification problem of uncertain model is converted to a nonlinear optimization of the upper and lower bounds for uncertain parameters estimation. By replacing the identified memoryless nonlinear operators by its related sinusoidal-input describing function, the Linear Fractional Transformation (LFT) technique is applied to the modeling process. Finally, the structured singular value(μ) method is applied to robust LCO analysis. An example of a two-degree wing section is carded out to validate the framework above. Results indicate that the dynamic characteristics and model uncertainties of the aeroelastic system can be depicted by the identified uncertain model set. The robust LCO magnitude of pitch angle for the identified uncertain model is lower than that of the nominal model at the same velocity. This method can be applied to robust flutter and LCO prediction.展开更多
基金National Natural Science Foundation of China under Grant Nos.70431002 and 10672093
文摘Synchronization in coupled oscillator networks has attracted much attention from many fields of science and engineering. In this paper, it is firstly proved that the oscifiator network with nonlinear coupling is also eventually dissipative under the hypothesis of eventual dissipation of the uncoupled oscillators. And the dynamics of the network is analyzed in its absorbing domain by combining two methods developed recently. Suufficient conditions for synchronization in the oscillator networks with nonlinear coupling are obtained. The two methods are combined effectively and the results embody the respective merits of the two methods. Numerical simulations confirm the validity of the results.
文摘Evolutionary response analysis of Duffing oscillator using Gaussian equivalent linearization in wavelet based time-frequency frame work is presented here. Cubic (i.e., odd type) non-linearity associated with stiffness and damping is modeled. The goal of this research is to develop the mathematical model of an equivalent linear system which is applicable for different non-stationary input processes (i.e., either summation of amplitude modulated stationary orthogonal processes or digitally simulated non-stationary processes). The instantaneous parameters of the ELTVS (equivalent linear time varying system) are evaluated by minimizing the error between the displacements of non-linear and equivalent linear systems in wavelet domain. For this purpose, three different basis functions (i.e., Mexican Hat, Morlet and a modified form of Littlewood-Paley) are used. The unknown parameters (i.e., natural frequency and damping) of the ELTVS are optimized in stochastic least square sense. Numerical results are presented for different types of input to show the applicability and accuracy of the proposed wavelet based linearization technique.
基金supported by the National Natural Science Foundation of China(Grant Nos.11002088,11272361)the Innovation Foundation for PhD Graduates of SYSU
文摘The nonlinear aeroelastic system of an airfoil with an external store was investigated,with emphasis on the bounds of limit cycle oscillations(LCOs).Based on the equivalent linearization,an approach was proposed to calculate the bounds on LCOs over the full flight envelope.The bounds are determined directly without solving LCOs one by one as the flow speed varies.The presented approach can provide us with the maximal LCO amplitudes and the lower threshold for flow speed beyond which LCOs may arise.Numerical examples show that the obtained bounds are in nice agreement with numerical simulation results.The speed threshold can be predicted to a relative error less than 0.1%,and the maximal LCO amplitude to about 3%.The influences of the system parameters on the speed threshold for speed were investigated efficiently by the proposed approach.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716006 and 10902006)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20091102110015)the Innovation Foundation of BUAA for PhD Graduates
文摘Model uncertainty directly affects the accuracy of robust flutter and limit-cycle-oscillation (LCO) analysis. Using a data-based method, the bounds of an uncertain block-oriented aeroelastic system with nonlinearity are obtained in the time domain. Then robust LCO analysis of the identified model set is performed. First, the proper orthonormal basis is constructed based on the on-line dynamic poles of the aeroelastic system. Accordingly, the identification problem of uncertain model is converted to a nonlinear optimization of the upper and lower bounds for uncertain parameters estimation. By replacing the identified memoryless nonlinear operators by its related sinusoidal-input describing function, the Linear Fractional Transformation (LFT) technique is applied to the modeling process. Finally, the structured singular value(μ) method is applied to robust LCO analysis. An example of a two-degree wing section is carded out to validate the framework above. Results indicate that the dynamic characteristics and model uncertainties of the aeroelastic system can be depicted by the identified uncertain model set. The robust LCO magnitude of pitch angle for the identified uncertain model is lower than that of the nominal model at the same velocity. This method can be applied to robust flutter and LCO prediction.