多Agent系统中,Agent间通过形成联盟达到提高任务求解能力,获取更多收益的目的。主要关注联盟模型的改进和联盟形成阶段的改进,基于ARG(agent,role,group)元模型和学习机制提出了一种采用角色和学习机制的新联盟模型CLAR(coalition mode...多Agent系统中,Agent间通过形成联盟达到提高任务求解能力,获取更多收益的目的。主要关注联盟模型的改进和联盟形成阶段的改进,基于ARG(agent,role,group)元模型和学习机制提出了一种采用角色和学习机制的新联盟模型CLAR(coalition model based on learnin gagent and role);在采用合同网协议的CLAR联盟模型中提出了两阶段联盟形成机制;通过捕食者问题实验验证了角色和学习机制的作用,以及两阶段联盟形成机制在减少通讯代价上的作用。展开更多
Support vector machine(SVM)has a good application prospect for speech recognition problems;still optimum parameter selection is a vital issue for it.To improve the learning ability of SVM,a method for searching the op...Support vector machine(SVM)has a good application prospect for speech recognition problems;still optimum parameter selection is a vital issue for it.To improve the learning ability of SVM,a method for searching the optimal parameters based on integration of predator prey optimization(PPO)and Hooke-Jeeves method has been proposed.In PPO technique,population consists of prey and predator particles.The prey particles search the optimum solution and predator always attacks the global best prey particle.The solution obtained by PPO is further improved by applying Hooke-Jeeves method.Proposed method is applied to recognize isolated words in a Hindi speech database and also to recognize words in a benchmark database TI-20 in clean and noisy environment.A recognition rate of 81.5%for Hindi database and 92.2%for TI-20 database has been achieved using proposed technique.展开更多
文摘多Agent系统中,Agent间通过形成联盟达到提高任务求解能力,获取更多收益的目的。主要关注联盟模型的改进和联盟形成阶段的改进,基于ARG(agent,role,group)元模型和学习机制提出了一种采用角色和学习机制的新联盟模型CLAR(coalition model based on learnin gagent and role);在采用合同网协议的CLAR联盟模型中提出了两阶段联盟形成机制;通过捕食者问题实验验证了角色和学习机制的作用,以及两阶段联盟形成机制在减少通讯代价上的作用。
文摘Support vector machine(SVM)has a good application prospect for speech recognition problems;still optimum parameter selection is a vital issue for it.To improve the learning ability of SVM,a method for searching the optimal parameters based on integration of predator prey optimization(PPO)and Hooke-Jeeves method has been proposed.In PPO technique,population consists of prey and predator particles.The prey particles search the optimum solution and predator always attacks the global best prey particle.The solution obtained by PPO is further improved by applying Hooke-Jeeves method.Proposed method is applied to recognize isolated words in a Hindi speech database and also to recognize words in a benchmark database TI-20 in clean and noisy environment.A recognition rate of 81.5%for Hindi database and 92.2%for TI-20 database has been achieved using proposed technique.