In this paper, we considered the predator-prey system with stage-structure for prey, where the predators predate immature preys only. The positivity and boundedness of the solutions and asymptotic stability of equilib...In this paper, we considered the predator-prey system with stage-structure for prey, where the predators predate immature preys only. The positivity and boundedness of the solutions and asymptotic stability of equilibrium were firstly discussed, and then uniformly persistent sufficient conditions of populations were found.展开更多
two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, ...two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, by the comparison theorem of impulsive differential equation, the sufficient conditions are derived for the permanence and the existence of periodic solution of the system.展开更多
The goal of this paper is to investigate the dynamics of a non-autonomous density- dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the ...The goal of this paper is to investigate the dynamics of a non-autonomous density- dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered, such that the studied predator-prey system conforms to the realistically biological environment. We firstly introduce a sufficient condition for the permanence of the system and then use a specific set to obtain a weaker sufficient condition. Afterward, we provide corresponding conditions for the extinction of the system and the existence of boundary periodical solutions, respectively. ~rther, we get a sufficient condition for global attractiveness of the boundary periodic solution by constructing a Lyapunov function, arriving at the uniqueness of boundary periodic solutions since the uniqueness of boundary periodic solutions can be ensured by global attractiveness. Finally, based on the existence of positive periodic solutions, which can be ensured by the Brouwer fixed- point theorem, we provide a sufficient condition for the uniqueness of positive periodic solutions.展开更多
In this paper, we discuss the behavior of a predator-prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analy...In this paper, we discuss the behavior of a predator-prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analyzing stabilities of its four equilibria. Then, we consider the asymptotic behavior of the stochastic system. By Lyapunov analysis methods, we show the stochastic stability and its long time behavior around the equi- librium of the deterministic system. We obtain there are similar properties between the stochastic system and its corresponding deterministic system, when white noise is small. But large white noise can make a unstable deterministic system to be stable.展开更多
A predator-prey discrete-time model with non-monotone functional response and den- sity dependence is investigated in this paper. By using the comparison theorem of the difference equation, some sufficient conditions ...A predator-prey discrete-time model with non-monotone functional response and den- sity dependence is investigated in this paper. By using the comparison theorem of the difference equation, some sufficient conditions are obtained for the permanence of the system with variable coefficients. At the same time, a set of sufficient conditions about permanent of the system with almost periodic coefficients is also set up, which utilizes almost periodic characteristics of the system. Furthermore, the criteria which guarantee the existence of a globally attractive positive almost periodic solution of the system is established. An example is given to illustrate the feasibility of the obtained results.展开更多
to biological and chemical control strategy for pest control, a Holling II func- tional response predator-prey system concerning state-dependent impulsive control is investigated. We define the successor functions of ...to biological and chemical control strategy for pest control, a Holling II func- tional response predator-prey system concerning state-dependent impulsive control is investigated. We define the successor functions of semi-continuous dynamic system and give an existence theorem of order 1 periodic solution of such a system. By means of sequence convergence rules and quMitative analysis, we successfully get the conditions of existence and attractiveness of order 1 periodic solution. Our results show that our method used in this paper is more efficient and easier than the existing methods to prove the existence and attractiveness of order 1 periodic solution.展开更多
A delayed predator-prey diffusion system with homogeneous Neumann boundary condi- tion is considered. In order to study the impact of the time delay on the stability of the model, the delay ^- is taken as the bifurcat...A delayed predator-prey diffusion system with homogeneous Neumann boundary condi- tion is considered. In order to study the impact of the time delay on the stability of the model, the delay ^- is taken as the bifurcation parameter, the results show that when the time delay across some critical values, the Hopf bifurcations may occur. In particular, by using the normal form theory and the center manifold reduction for partial functional differential equations, the direction of the Hopf bifurcation and the stability of the bifurcated periodic solution have been established. The effect of the diffusion on the bifurcated periodic solution is also considered. A numerical example is given to support the main result.展开更多
文摘In this paper, we considered the predator-prey system with stage-structure for prey, where the predators predate immature preys only. The positivity and boundedness of the solutions and asymptotic stability of equilibrium were firstly discussed, and then uniformly persistent sufficient conditions of populations were found.
基金Supported by the Education Department Natural Science Foundation of Henan Province (2008A180041)
文摘two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, by the comparison theorem of impulsive differential equation, the sufficient conditions are derived for the permanence and the existence of periodic solution of the system.
文摘The goal of this paper is to investigate the dynamics of a non-autonomous density- dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered, such that the studied predator-prey system conforms to the realistically biological environment. We firstly introduce a sufficient condition for the permanence of the system and then use a specific set to obtain a weaker sufficient condition. Afterward, we provide corresponding conditions for the extinction of the system and the existence of boundary periodical solutions, respectively. ~rther, we get a sufficient condition for global attractiveness of the boundary periodic solution by constructing a Lyapunov function, arriving at the uniqueness of boundary periodic solutions since the uniqueness of boundary periodic solutions can be ensured by global attractiveness. Finally, based on the existence of positive periodic solutions, which can be ensured by the Brouwer fixed- point theorem, we provide a sufficient condition for the uniqueness of positive periodic solutions.
文摘In this paper, we discuss the behavior of a predator-prey model with disease in the prey with and without stochastic perturbation, respectively. First, we briefly give the dynamic of the deterministic system, by analyzing stabilities of its four equilibria. Then, we consider the asymptotic behavior of the stochastic system. By Lyapunov analysis methods, we show the stochastic stability and its long time behavior around the equi- librium of the deterministic system. We obtain there are similar properties between the stochastic system and its corresponding deterministic system, when white noise is small. But large white noise can make a unstable deterministic system to be stable.
文摘A predator-prey discrete-time model with non-monotone functional response and den- sity dependence is investigated in this paper. By using the comparison theorem of the difference equation, some sufficient conditions are obtained for the permanence of the system with variable coefficients. At the same time, a set of sufficient conditions about permanent of the system with almost periodic coefficients is also set up, which utilizes almost periodic characteristics of the system. Furthermore, the criteria which guarantee the existence of a globally attractive positive almost periodic solution of the system is established. An example is given to illustrate the feasibility of the obtained results.
文摘to biological and chemical control strategy for pest control, a Holling II func- tional response predator-prey system concerning state-dependent impulsive control is investigated. We define the successor functions of semi-continuous dynamic system and give an existence theorem of order 1 periodic solution of such a system. By means of sequence convergence rules and quMitative analysis, we successfully get the conditions of existence and attractiveness of order 1 periodic solution. Our results show that our method used in this paper is more efficient and easier than the existing methods to prove the existence and attractiveness of order 1 periodic solution.
文摘A delayed predator-prey diffusion system with homogeneous Neumann boundary condi- tion is considered. In order to study the impact of the time delay on the stability of the model, the delay ^- is taken as the bifurcation parameter, the results show that when the time delay across some critical values, the Hopf bifurcations may occur. In particular, by using the normal form theory and the center manifold reduction for partial functional differential equations, the direction of the Hopf bifurcation and the stability of the bifurcated periodic solution have been established. The effect of the diffusion on the bifurcated periodic solution is also considered. A numerical example is given to support the main result.