AIM: To study the protective effect of Astragalus rnernbranaceus on intestinal mucosa reperfusion injury and its mechanism after hemorrhagic shock in rats. METHODS: A total of 32 SD rats were randomly divided into f...AIM: To study the protective effect of Astragalus rnernbranaceus on intestinal mucosa reperfusion injury and its mechanism after hemorrhagic shock in rats. METHODS: A total of 32 SD rats were randomly divided into four groups (n = 8, each group): normal group, model group, low dosage group (treated with 10 g/kg Astragalus membranaceus) and high dosage group (treated with 20 g/kg Astragalus membranaceus). The model of hemorrhagic shock for 60 min and reperfusion for 90 min was established. Therapeutic solution (3 mL) was administrated before reperfusion. At the end of the study, the observed intestinal pathology was analyzed. The blood concentrations of lactic acid (LD), nitric oxide (NO), endothelin-1 (ET-1), malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) in intestinal mucosa were determined. RESULTS: The intestinal mucosa pathology showed severe damage in model group and low dosage group, slight damage in high dosage group and no obvious damage in normal group. The Chiu's score in low dose group and high dose group was significantly lower than that in model group. The content of MDA in model group was higher than that in low and high dose groups, while that in high dose group was almost the same as in normal group. The activity of SOD and GSH-PX was the lowest in model group and significantly higher in high dose group than in normal and low dose groups. The concentrations of LD and ET-1 in model group were the highest. The concentrations of NO in model group and low dose group were significantly lower than those in high dose group and normal group. CONCLUSION: High dose Astraga/us membranaeus has much better protective effect on hemorrhagic shockreperfusion injury of intestinal mucosa than low dose Astragalus membranaceus. The mechanism may be that Astragalus membranaceus can improve antioxidative effect and regulate NO/ET level during hemorrhagic reperfusion.展开更多
AIM: To investigate the role of Kupffer cells (KCs) in acute hemorrhagic necrotizing pancreatitis-associated lung injury (AHNP-U). METHODS: Forty-two rats were allocated to four groups [sham operation, AHNP mode...AIM: To investigate the role of Kupffer cells (KCs) in acute hemorrhagic necrotizing pancreatitis-associated lung injury (AHNP-U). METHODS: Forty-two rats were allocated to four groups [sham operation, AHNP model, gadolinium chloride (GdCl3) pretreatment, GdCl3 control]. In GdCl3 pretreatment group, GdCl3 was administered by caudal vein injection 24 h before the AHNP model induction. Blood from the iliac artery, alveolar macrophages and tissues from the pancreas and lung, were collected in six animals per group 3 and 6 h after acute pancreatitis induction. TNF-α, IL-1 of Lserum, myeloperoxidase (MPO) of lung tissue, NF-κB activation of alveolar macrophages were detected. Serum AST and ALT in sham operation group and GdCl3 control group were tested. In addition, histopathological changes of the pancreas and lung were observed under light microscope. RESULTS: MPO of lung tissue and TNF-α, IL-1 levels of serum were all reduced significantly in GdCl3 pretreatment group compared to those in AHNP group (P〈0.01). NF-KB activation of alveolar macrophages was also attenuated significantly in GdCl3 pretreatment group compared to that in AHNP group (P〈0.01). The pathological injury of the lung was ameliorated obviously in GdCl3 pretreatment group compared to that in AHNP group. Nevertheless, the serum amylase level did not reduce and injury of the pancreas was not prevented in GdCl3 pretreatment group. CONCLUSION: Pulmonary injury induced by AHNP is mediated by KC activation and AHNP-LI can be significantly ameliorated by pretreatment with GdCh and KCs play a vital role in AHNP-LI.展开更多
基金Supported by the Chinese Traditional Medicine Foundation of Guangdong Province, China, No. 102061
文摘AIM: To study the protective effect of Astragalus rnernbranaceus on intestinal mucosa reperfusion injury and its mechanism after hemorrhagic shock in rats. METHODS: A total of 32 SD rats were randomly divided into four groups (n = 8, each group): normal group, model group, low dosage group (treated with 10 g/kg Astragalus membranaceus) and high dosage group (treated with 20 g/kg Astragalus membranaceus). The model of hemorrhagic shock for 60 min and reperfusion for 90 min was established. Therapeutic solution (3 mL) was administrated before reperfusion. At the end of the study, the observed intestinal pathology was analyzed. The blood concentrations of lactic acid (LD), nitric oxide (NO), endothelin-1 (ET-1), malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) in intestinal mucosa were determined. RESULTS: The intestinal mucosa pathology showed severe damage in model group and low dosage group, slight damage in high dosage group and no obvious damage in normal group. The Chiu's score in low dose group and high dose group was significantly lower than that in model group. The content of MDA in model group was higher than that in low and high dose groups, while that in high dose group was almost the same as in normal group. The activity of SOD and GSH-PX was the lowest in model group and significantly higher in high dose group than in normal and low dose groups. The concentrations of LD and ET-1 in model group were the highest. The concentrations of NO in model group and low dose group were significantly lower than those in high dose group and normal group. CONCLUSION: High dose Astraga/us membranaeus has much better protective effect on hemorrhagic shockreperfusion injury of intestinal mucosa than low dose Astragalus membranaceus. The mechanism may be that Astragalus membranaceus can improve antioxidative effect and regulate NO/ET level during hemorrhagic reperfusion.
基金Supported by the Natural Scientific Foundation of Tianjin,No.013612511
文摘AIM: To investigate the role of Kupffer cells (KCs) in acute hemorrhagic necrotizing pancreatitis-associated lung injury (AHNP-U). METHODS: Forty-two rats were allocated to four groups [sham operation, AHNP model, gadolinium chloride (GdCl3) pretreatment, GdCl3 control]. In GdCl3 pretreatment group, GdCl3 was administered by caudal vein injection 24 h before the AHNP model induction. Blood from the iliac artery, alveolar macrophages and tissues from the pancreas and lung, were collected in six animals per group 3 and 6 h after acute pancreatitis induction. TNF-α, IL-1 of Lserum, myeloperoxidase (MPO) of lung tissue, NF-κB activation of alveolar macrophages were detected. Serum AST and ALT in sham operation group and GdCl3 control group were tested. In addition, histopathological changes of the pancreas and lung were observed under light microscope. RESULTS: MPO of lung tissue and TNF-α, IL-1 levels of serum were all reduced significantly in GdCl3 pretreatment group compared to those in AHNP group (P〈0.01). NF-KB activation of alveolar macrophages was also attenuated significantly in GdCl3 pretreatment group compared to that in AHNP group (P〈0.01). The pathological injury of the lung was ameliorated obviously in GdCl3 pretreatment group compared to that in AHNP group. Nevertheless, the serum amylase level did not reduce and injury of the pancreas was not prevented in GdCl3 pretreatment group. CONCLUSION: Pulmonary injury induced by AHNP is mediated by KC activation and AHNP-LI can be significantly ameliorated by pretreatment with GdCh and KCs play a vital role in AHNP-LI.