The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In ord...The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.展开更多
An equivalent bar conception is firstly developed for the computer analysis of pantographic foldable structures. The uniplet of two three node beam elements is assumed as a six bar assembly with respect to least norm ...An equivalent bar conception is firstly developed for the computer analysis of pantographic foldable structures. The uniplet of two three node beam elements is assumed as a six bar assembly with respect to least norm least square solution for the elastic strain energy equality. The equilibrium equation is developed for the equivalent models, and the internal forces formulated sequently for backup calculation. This procedure is proved practical for some engineering, and some interesting concepts proposed. Finally, three numerical tests are presented.展开更多
The purpose of this paper is to present a design procedure for subsea rigid jumper system including strength and fatigue analysis. Special attention gives to a methodology based on DNV-RP-F105 to evaluate jumper fatig...The purpose of this paper is to present a design procedure for subsea rigid jumper system including strength and fatigue analysis. Special attention gives to a methodology based on DNV-RP-F105 to evaluate jumper fatigue damage caused by vortex induced vibration (VIV). Jumper strength analysis is to determine the jumper con-figuration which can accommodate various load conditions and all possible span lengths driven by installation tole-rances of connected subsea structures. Fatigue analysis includes two parts:thermal fatigue and VIV fatigue. This paper presents the procedure of VIV fatigue damage calculation. An example is given to illustrate above methodologies.展开更多
This paper first introduces the basic principle of seismic risk analysis, and then put forward the basic concept of structures global seismic fragility, aiming at the existing problems of traditional analysis method, ...This paper first introduces the basic principle of seismic risk analysis, and then put forward the basic concept of structures global seismic fragility, aiming at the existing problems of traditional analysis method, combined the method of analytical approximation degree of structure reliability with Performance-Based Seismic Design (PBSD), put forward the analysis method of structural reliability and the performance of the global seismic fragility, are calculated by using the finite element reliability method of structures global seismic fragility. Taking the maximum interlamination relative deformation as indicators of overall performance, we analyze seismic fragility of five storey RC frame structure, rendering the seismic fragility curves corresponding to different performance requirements and different earthquake action.展开更多
Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundatio...Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.展开更多
Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people...Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.展开更多
基金Project(2006BAJ03A03)supported by the National Key Technology R&D Program during the 11th Five-Year Plan Period of China
文摘The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.
文摘An equivalent bar conception is firstly developed for the computer analysis of pantographic foldable structures. The uniplet of two three node beam elements is assumed as a six bar assembly with respect to least norm least square solution for the elastic strain energy equality. The equilibrium equation is developed for the equivalent models, and the internal forces formulated sequently for backup calculation. This procedure is proved practical for some engineering, and some interesting concepts proposed. Finally, three numerical tests are presented.
文摘The purpose of this paper is to present a design procedure for subsea rigid jumper system including strength and fatigue analysis. Special attention gives to a methodology based on DNV-RP-F105 to evaluate jumper fatigue damage caused by vortex induced vibration (VIV). Jumper strength analysis is to determine the jumper con-figuration which can accommodate various load conditions and all possible span lengths driven by installation tole-rances of connected subsea structures. Fatigue analysis includes two parts:thermal fatigue and VIV fatigue. This paper presents the procedure of VIV fatigue damage calculation. An example is given to illustrate above methodologies.
文摘This paper first introduces the basic principle of seismic risk analysis, and then put forward the basic concept of structures global seismic fragility, aiming at the existing problems of traditional analysis method, combined the method of analytical approximation degree of structure reliability with Performance-Based Seismic Design (PBSD), put forward the analysis method of structural reliability and the performance of the global seismic fragility, are calculated by using the finite element reliability method of structures global seismic fragility. Taking the maximum interlamination relative deformation as indicators of overall performance, we analyze seismic fragility of five storey RC frame structure, rendering the seismic fragility curves corresponding to different performance requirements and different earthquake action.
文摘Damage identification plays an important role in structural health monitoring systems. Despite variety in damage identification methods, little attention has been paid to the seismic damage identification of foundations. When shear walls serve as the lateral load resistance system of structures, foundations may subject to the high level of concentrated moment and shear forces. Consequently, they can experience severe damage. Since such damage is often internal and not visible, visual inspections cannot identify the location and the severity of damage. Therefore, a robust method is required for damage localization and quantification of foundations. According to the concept of performance-based seismic design of structures, the seismic behavior of foundations is considered as Force-Controlled. Therefore, for damage identification of foundation, internal forces should be estimated during ground motions. In this study, for real-time seismic damage detection of foundations, a method based on artificial neural networks was proposed. A feed-forward multilayer neural network with one hidden layer was selected to map input samples to output parameters. The lateral displacements of stories were considered as the input parameters of the neural network while moment and shear force demands at critical points of foundations were taken into account as the output parameters. In order to prepare well-distributed data sets for training the neural network, several nonlinear time history analyses were carried out. The proposed method was tested on the foundation of a five-story concrete shear wall building. The obtained results revealed that the proposed method was successfully estimated moment and shear force demands at the critical points of the foundation.
基金supported by the National Natural Science Foundation of China (Grant No. 11072076)
文摘Great progress has been made in study on dynamic behavior of the damaged structures subject to deterministic excitation.The stochastic response analysis of the damaged structures,however,has not yet attracted people's attention.Taking the damaged elastic beams for example,the analysis procedure for stochastic response of the damaged structures subject to stochastic excitations is investigated in this paper.First,the damage constitutive relations and the corresponding damage evolution equation of one-dimensional elastic structures are briefly discussed.Second,the stochastic dynamic equation with respect to transverse displacement of the damaged elastic beams is deduced.The finite difference method and Newmark method are adopted to solve the stochastic partially-differential equation and corresponding boundary conditions.The stochastic response characteristic,damage evolution law,the effect of noise intensity on damage evolution and the first-passage time of damage are discussed in detail.The present work extends the research field of damaged structures,and the proposed procedure can be generalized to analyze the dynamic behavior of more complex structures,such as damaged plates and shells.