Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage...Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage evolution to acoustic emission parameters was proposed by incorporating the AE rate process theory. The AE monitoring results indicate that damages occur in both elastic and plastic phases of steel strand. In elastic phase, AE signals are mainly sent out from the micro damage due to the surface friction among the wires of steel strand, while in plastic phase, AE signals emitted from the plastic deformation of wires. In addition, the AE cumulative parameters curves closely resemble the loading curve. The AE cumulative parameters curves can well describe the damage evolution process including the damage occurrence and damage development for steel strands. It is concluded that the AE technique is an effective and useful nondestructive technique for evaluating the damage characteristics of steel strand.展开更多
A crystal plasticity constitutive model of high-entropy alloys(HEAs)coupled with damage evolution equation at high temperature is developed.To simulate the degraded load-carrying capacity of HEAs caused by microdefect...A crystal plasticity constitutive model of high-entropy alloys(HEAs)coupled with damage evolution equation at high temperature is developed.To simulate the degraded load-carrying capacity of HEAs caused by microdefects,a phenomenological damage evolution equation is proposed based on the compression experiments at different temperatures.The established model is used to simulate the stress softening phenomenon of polycrystalline AlCrCuFeNi-based HEAs,which is highly dependent on the strain rate and temperature.Compared with the experimental data,the proposed model is able to accurately describe the stress-strain relationship of HEAs.展开更多
基金Projects(51308073,51378081)supported by the National Natural Science Foundation of ChinaProject(20124316120002)supported by PhD Programs Foundation of Ministry of Education of China+1 种基金Project(12KB02)supported by the Key Laboratory for Safety Control of Bridge Engineering of Ministry of Education of ChinaProject(14JJ3087)supported by the Science Foundation of Hunan Province,China
文摘Utilizing the acoustic emission(AE) technique, an experimental investigation into the damage evolution for steel strand under axial tension was described. The damage evolution model for steel stand relating the damage evolution to acoustic emission parameters was proposed by incorporating the AE rate process theory. The AE monitoring results indicate that damages occur in both elastic and plastic phases of steel strand. In elastic phase, AE signals are mainly sent out from the micro damage due to the surface friction among the wires of steel strand, while in plastic phase, AE signals emitted from the plastic deformation of wires. In addition, the AE cumulative parameters curves closely resemble the loading curve. The AE cumulative parameters curves can well describe the damage evolution process including the damage occurrence and damage development for steel strands. It is concluded that the AE technique is an effective and useful nondestructive technique for evaluating the damage characteristics of steel strand.
基金the Shaanxi Science and Technology Innovation Team(Grant No.2022TD-05),Shaanxi“Sanqin Scholar”Innovation Team,and the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2021JQ-077).
文摘A crystal plasticity constitutive model of high-entropy alloys(HEAs)coupled with damage evolution equation at high temperature is developed.To simulate the degraded load-carrying capacity of HEAs caused by microdefects,a phenomenological damage evolution equation is proposed based on the compression experiments at different temperatures.The established model is used to simulate the stress softening phenomenon of polycrystalline AlCrCuFeNi-based HEAs,which is highly dependent on the strain rate and temperature.Compared with the experimental data,the proposed model is able to accurately describe the stress-strain relationship of HEAs.